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Comments 
Initial  version. 
Released  following  formal  review of  Version 1 .O by  NASA  board  reviewing 
the EOS CHEM  Algorithm  Theoretical  Basis  Documents.  This  document 
received  top  grade  of ‘A’ from  the  review  board.  The  board  recommenda- 
tions  which  apply  to  this  document  are  italicized  below,  followed by the 
(non-italicized)  responses of the  MLS  team. 

0 All aspects of the forward model should be examined . . . As  out- 
lined  in  the  overview  document,  a  separate  forward  model  ATBD  is 
in  preparation. 

0 A more complete and realistic evaluation of the retrieval algorithm 
CPU time requirements should be performed. The  concern  during  the 
review  was  the  requirements  for  forward  model  CPU  time,  this  will 
be  discussed in the  forward  model  ATBD.  The  CPU  requirements 
for  the  inverse  model  are  discussed  in  detail  in  Section 7.4 of this 
document.  More  detailed  estimates  will  be  given  in  later  versions of 
this  document,  based  on  early  versions of  the  production  code. 

No  changes  to  the  document  were  needed  as  a  result of  these  recommenda- 
tions. 

Changes  from  Version 1 .O are  described  below,  reflect  expected  progress  and 
correction  of  a  few  minor  errors. 

0 The  ‘secondary’  geophysical  products of  Version 1 .O have  now  been 
defined  as  ‘standard’  data  products.  This  resulted  in  updates  to  Ta- 
ble  1.1. 

0 Also  in  Table  1.1  the  product  designation  has  been  changed  to  use 
dashes  rather  than  underscores,  to  reflect  the  implementation  in  soft- 
ware. 

0 Added  definition of go in  Section 3.4. 

0 Modified  Figure 3.6 to  include  effects of  refraction.  Caption  modified 
accordingly. 

0 Chapter 6 largely  rewritten  to  reflect  new  methodology. 

0 Modified  Section 7.5 as it is  likely  that  the  forward  model  radiance 
data  will  be  produced  and  archived  routinely. 

0 Corrected  Section  C.2  to  use log, rather  than In. 

0 Modified  Table B.1 to  use  dashes  rather  than  underscores,  as  in Ta- 
ble  1.1. 

0 Minor  grammatical  corrections. 
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Chapter 1 
Introduction 

1.1 The  Microwave  Limb  Sounder  experiment 

EOS  MLS is a  successor  to  the  MLS  experiment  (Barath  et  al.  1993)  that  formed  part of the  Upper 
Atmosphere  Research  Satellite  (UARS),  launched  in  September  1991  (Reber  1993;  Reber et al.  1993). 
The  instrument  is  designed  to  study  aspects of the  chemistry  and  dynamics  of  the  atmosphere,  from 
the  upper  troposphere  to  the  lower  mesosphere.  The  microwave  heterodyne  technique  is  employed 
to  observe  thermal  microwave  emission  from  the  Earth's  limb  in  several  spectral  bands,  designed to 
characterize  emission  from 0 2  (used  to  obtain  temperature  and  pressure  information), 0 3 ,  H20, C10, 
HCl, HN03,  N20, CO,  OH, SO2, BrO,  HOCl, H02, and  HCN. 

EOS  MLS  is  one  of  four  instruments  on  the  EOS  CHEM  spacecraft. The launch of the  CHEM 
platform  is  planned  for  late 2002. CHEM  will fly in  a  98"  inclined orbit, at  a  nominal  height  of 705 km, 
with  a  nominal  orbital  period  of  98.9  minutes. 

1.2 The  aims of this  document 

This  document  describes  the  theoretical  basis  for  the  'retrieval'  algorithms  to  be  used  in  the  routine 
processing  of  data  from  the  MLS  instrument.  The  task  of  the  retrieval  algorithms  is  to  convert  calibrated 
measurements of thermal  limb  emission  from  MLS  into  estimates of geophysical  parameters  such as 
temperature  and  composition. 

The MLS  calibrated  radiance  observations  are  known  collectively  as  Level  1B  data.  Level 2 data  de- 
scribe  retrieved  geophysical  parameters  at  the  nominal  footprint  of  the  MLS  instrument.  These  Level 2 
data  are  produced  using  the  algorithms  described  in  this  document.  Level  3  data  describe  geophysi- 
cal  parameters  on  regular  1atitudeAongitude  grids.  Most  of  the  Level 3 products  are  generated by the 
application of gridding  algorithms  to  the  Level 2 data. 

Some of  the  species  MLS  is  designed  to  measure  have  very  low  mixing  ratios  andlor  weak  emission 
lines.  This  leads  to  a  comparatively  poor  signal  to  noise  ratio  for  the  corresponding  MLS  radiance  obser- 
vations. The best  estimates of the  abundance  of  such  species  are  obtained  by  using  retrieval  algorithms 
to  derive  quantities  such  as  daily  zonal  means,  monthly  maps, or similar  averaged  quantities.  Such 
datasets  are  by  definition  Level 3 data.  Because  the  algorithms  used  to  produce  these  data  necessarily 
use  retrieval  theory,  they  are  also  described  in  this  document. 

1.3 Related  Algorithm  Theoretical  Basis  Documents 

An  overview  of  the  MLS  instrument  and  data  processing  operations  is  given  in  Waters  1999. The 
algorithms  used  in  the  Level  1  processing  to  calibrate  the  raw  observations  of  microwave  radiance  made 
by the  instrument  are  described  in  Jarnot  1999.  An  important  component of the  Level 2 processing 
algorithms is the forward model, the  theoretical  basis  for  this  aspect  of  the  data  processing is given 
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Chapter 1. Introduction 

Table 1.1: A list of the  geophysical  products  produced by the algorithms  described in the docu- 
ment.  For  a  definition of the terms  used  see  Waters 1999. The  products  listed  in  bold  type  are  the 
standard MLS data  products,  those in non-bold  type  are  additional  ‘diagnostic’  products  produced 
by the  algorithms. All the products,  both  standard  and  diagnostic,  are  produced  using  the  same  al- 
gorithms.  The  ‘diagnostic’  products  are  produced  for  special  scientific  and/or  diagnostic  purposes. 
Products  marked t are  best  processed  using  the  ‘noisy’  products  algorithm to produce  Level 3 data 
for  some  or  all of their  vertical  range,  although  Level 2 data  for  these may be produced  routinely. 
The  quantities  marked S are  produced  using  algorithms  that  are not based on retrieval  theory,  but on 
analysis of other  retrieved  products. 

Geophysical  products: 

TEMPERATURE 
TEMPERATURE-118-a 
TEMPERATURE-118-b 
TEMPERATURE-240 
GEOPOTENTIAL-HT 
GEOPOTENTIAL-HT- 
118-a 
GEOPOTENTIAL-HT- 
118-b 
GEOPOTENTIAL-HT- 
2 4 0  
H20 
H20-TROP-118 
H20-TROP-190 
H20-TROP-240 
H20-TROP-640 
H20-TROP-2.5T 
REL-HUM-TROP 
REL-HUM-TROP-118 
REL-HUM-TROP-190 
REL-HUM-TROP-240 
REL-HUM-TROP-640 
REL-HUM-TROP-2.5T 

HN03 
0 3  
0 3 - 1 9 0  
0 3 - 2 4 0 - 4  
0 3 - 2 4 0 - 9  
0 3 - 6 4 0  
03-STRAT-COLUMN 
HC1 
c10 
C 1 0 - 2 4 0  
(210-640 
N 2 0  
N20-190  
N20-640  
OHt 
OH-2514-Ht 
OH-2514-Vt 
OH-2510-Ht 
OH-2510-Vt 
H02 t 
H02-650 t  
H02-660 t  
B r O t  

B r 0 - 6 2 5 t  
BrO- 6 5 O t  
co 
HOC 1 t 
HCNt 
so2 
S 0 2 - 2 0 4  
5 0 2 - 6 4 0  
CIRRUS-ICES 
CLOUD-EXT-COEFF- 
118  
CLOUD-EXT-COEFF- 
1 9 0  
CLOUD-EXT-COEFF- 
2 4 0  
CLOUD-EXT-COEFF- 
6 4 0  
CLOUD-EXT-COEFF- 
2 .  ST 
TROPOPAUSE- 
PRESSURES 

in  Read  et  al. 1999. The  precisions  to  be  expected  from  the EOS MLS  observations of geophysical 
parameters  are  given  in  Filipiak 1999. 

1.4 EOS MLS data  products  for  which  this  document  applies 

The  algorithms  described  here  are  used  in  the  production  of  all  the EOS MLS geophysical  products. 
For  a  complete  list of the  products  see  Table 1.1. The  majority of the  products  in  the  table  will  be 
produced  using  the  retrieval  algorithms  described  in  Chapters 4 and 5. Cirrus  ice  products  are  described 
in  Chapter 6. Tropopause  pressure,  and  products  such  as  column  ozone  are  described  in  Appendix  A. 

2 
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Chapter 2 
Overview of EOS  MLS  Level 2 data  processing 

Most  of  this  document  describes  the  algorithms  used  in  the  production  of  the  Level  2  data.  This  chapter 
gives  a  brief  overview of the  components  of  the  algorithms  and  the  software  which  implements  them. 

2.1 The  aims of  retrieval  theory 

The  methods  used  to  convert  remote  measurements of radiation  emitted  by  the  atmosphere  into  estimates 
of geophysical  parameters  are  known  as retrieval  algorithms. Retrieval  theory  is  a  well-established  field 
in atmospheric  science  and is covered  in  the  standard  literature  (Rodgers  1976;  Rodgers  1990).  A 
mathematical  discussion of retrieval  theory is given  in  Section  3.2.  This  section  gives  a  brief  outline  of 
the  fundamental  principals  involved. 

In  a  retrieval  algorithm  a  quantity  known  as  the state  vector is  used  to  describe  the  current  knowl- 
edge  of  the state of  the  atmosphere  and  relevant  aspects  of  the  instrumental  calibration  and  state  (known 
collectively  as  the  measurement  system).  Typically  the  state  vector is initialized  with a  priori infor- 
mation  such  as  climatological  datasets.  Given  the  state  vector, afonvard model calculation  can  be 
applied to predict  what  radiances  the  instrument  would  observe,  were  the  measurement  system  in  the 
state  described  by  the  state  vector.  By  comparing  these  predicted  radiances  with  the  radiances  actu- 
ally  observed,  and by malung  use  of  additional  information  provided  by  the  forward  model  calculation 
(namely  derivatives  of  radiance  with  respect to the  state  vector),  the  retrieval  algorithm  computes  a  better 
estimate of the  state  vector, i.e. one  for  which  the  predicted  radiances  will  be  closer  to  those  observed. 
Often  retrieval  algorithms  use an iterative  approach  to  continuously  refine  the  state  vector  until  appro- 
priate  convergence  has  been  achieved.  For  various  reasons,  including  numerical  stability,  most  retrieval 
algorithms  include virtual  measurements. These  are  typically a  priori estimates  of  the  contents of the 
state  vector;  usually,  but  not  in  all  cases,  the  same  estimates  used  as  initial  values  in  the  iterations. 

2.2 Structure of  the  Level 2 data  processing  software 

The  main  components of the  Level 2 data  processing  software  are  shown  in  Figure 2.1. The  principal 
components  are  the  retrieval  and  forward  model  calculations  described  above.  Before  these  are  invoked, 
operational  meteorological  data  are  combined  with  climatological  datasets  and a  priori knowledge  of 
the  state  of  the  instrument,  in  order  to  construct  an  initial  value  for  the  state  vector.  After  the  retrieval 
and  forward  model  calculations  are  complete,  an  additional  process  produces  other  products  (such  as 
cloud  parameters,  tropopause  pressure  and  stratospheric  ozone  column),  and  outputs  the  Level 2 data 
along  with  appropriate  diagnostics. 

2.3 Heritage of  the  MLS retrieval  algorithms 

The EOS MLS  instrument  is  a  successor  to  the  MLS  instrument  that  formed  part of the  Upper  Atmo- 
sphere  Research  Satellite  (UARS)  mission,  launched  in  September  1991.  The  data  processing  algo- 

~ ~~ 
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Chapter 2. Overview of EOS MLS  Level 2 data  processing 
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Figure 2.1: This  figure  shows  the  essential  components  and  data  flow  for  the EOS MLS  Level 2 
data  processing  software. 
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2.3. Heritage of the MLS retrieval  algorithms 

rithms  envisaged  for  EOS  MLS  have  essentially  the  same  theoretical  basis  as  those  implemented  for 
UARS  MLS  (notably  those  used to produce  the  latest  version,  v5,  of  the  UARS  MLS  dataset).  For 
information  on  the  earlier  versions of the  MLS  retrieval  algorithms  see  Fishbein  et  al.  1996;  Froidevaux 
et  al.  1996  and  Waters et al.  1996.  The  version 5 data  processing  algorithms  for  UARS MLS will  be 
described  in  Livesey et al.  (manuscript  in  preparation). 

While  the  theoretical  foundation of the  EOS  MLS  retrieval  algorithms  is  the  same as that of the 
UARS  algorithms,  several  aspects of the  EOS  MLS  instrument  design  and  intended  scientific  use  differ 
from  those  of  the  UARS  instrument,  necessitating  a  somewhat  different  implementation  of  the  algo- 
rithms. The major  differences,  in  regards  to  the  implication for algorithms  are: 

0 The  UARS  instrument  performs  a  ‘stop  and  stare’  scan,  whereby  the  instrument  views  essentially 
the  same  region  of  the  atmospheric  limb  for  a  brief  period  before  moving  onto  a  new  region. The 
EOS MLS instrument  performs  a  continuous  scan,  where  the  height  of  the  limb  path is continu- 
ously  varied. This factor  must  be  taken  into  account  in  the  forward  model  calculation. 

0 The  UARS MLS instrument  observes  limb  emission  in  a  direction  perpendicular  to  the  spacecraft 
flight  direction,  while  the EOS MLS  instrument  observes  emission  from  the  region  of  the  atmo- 
sphere  directly  ahead  of  the  satellite.  This  geometry can, if properly  exploited,  yield  significantly 
more  information  about  the  horizontal  atmospheric  variability  along  the  measurement  track. 

0 UARS MLS was  designed  to  study  processes  mainly  in  the  upper  stratosphere.  In  recent  years, 
scientific  studies  have  become  increasingly  focused  on  the  lower  stratosphere  and  upper  tropo- 
sphere. The EOS MLS instrument  targets  this  region  specifically by the  use of high  bandwidth 
radiometers.  Such  observations  however,  can  be  affected  by  the  presence of cloud  (though  not 
to the  same  degree  as  observations  made  using  infraredlvisible  techniques).  In  addition,  in  these 
regions,  the  retrieval  problem  is  typically  more  non-linear  than  in  the  upper  stratosphere,  due  to 
the  increased  optical  depth of the  atmosphere  at  the  wavelengths  under  consideration. 
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Chapter 3 
The EOS MLS measurement  system 

This chapter  outlines the physics  behind  the  limb  sounding  technique  and  derives  the  algebraic  expres- 
sions  used in retrieval  calculations.  The  aspects of  the  MLS  instrument  design  that  are  relevant to the 
retrieval  algorithms  are  summarized. The chapter  then  considers  in  detail  how  the  state  vector  used  in 
the  MLS  retrieval  algorithms is constructed,  and  considers  some  implications  of  the  MLS  observation 
geometry. 

3.1 The  physics of limb  sounding 

Limb  sounding  of the atmosphere  is a well  established  technique  whereby  the  emission  (or  absorption 
in  the  case  of  occultation  measurements)  of  electromagnetic  radiation from the  atmosphere at the  limb 
of  the  earth  is  observed  from a satellite  platform.  The  radiance P observed by  the  instrument is given 
by  the  integral  form  of  the  radiative  transfer  equation 

where u is  frequency  and C2 is  solid  angle,  with A ( u ,  Q )  describing  the  instrument’s  spectral  and  field 
of  view  response,  and !2 ( t )  describing  the  movement  of  the  MLS  field  of  view  as a function  of  time. 
Zm(u, Q )  represents  the  background  emission,  in  this  case  the  microwave  background  field. s is the 
distance  along a given  ray  path,  where  the  spacecraft  is at s = 0, T ( s )  is the  atmospheric  temperature 
along  this  ray  path. B ( u ,  T )  is  the  blackbody  function,  which  describes  the  thermal  emission  of  the 
atmosphere  as  a  function  of  temperature  and  frequency  (for  this  discussion  local  thermodynamic  equi- 
librium  has  been  assumed,  and  the  effects  of  scattering  have  been  neglected.) The quantity t describes 
the  transmission  of  the  atmosphere  from  the points to  the  spacecraft. This is  defined  by 

r (u ,  s )  = exp 1- 1:; k ( u ,  T(s ’ ) ,  f ( s ’ ) )  p(s’)ds’ l  . 

The  quantity k is  the  absorption  coefficient as a function  of  frequency,  temperature  and  atmospheric 
composition  described  by  the  function f ( s ) .  p ( s )  is the  atmospheric  density. 

3.2  Introduction to retrieval  theory 

Equation  3.1  gives an expression  for  the  observed  radiance as a function  of  the  state  of  the  atmosphere 
(i.e.  its  temperature  and  composition).  The  aim  of  the  algorithms  described in this  document  is  to  invert 
this  calculation  and  obtain  an  estimate of the  state of the  atmosphere  based  on  the  observed  radiances. 
Retrieval  theory,  the  method  by  which  these  inverse  calculations  are  constructed,  has a great  heritage 
in  the  remote  sounding  field  (see  Rodgers  1976;  Rodgers  1990).  The  essential  details  of  the  subject, 
required  for  the  MLS  Level 2 algorithms,  are  given  here. 
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3.2. Introduction  to  retrieval  theory 

3.2.1 The state vector, measurement vectors and x 2  
It  is  clearly  impossible  to  invert  Equation 3.1 to obtain  the  functional form of  the  atmospheric  tempera- 
ture  and  composition  profiles,  as  this  would  involve  obtaining  infinite  degrees  of  freedom  from  a  finite 
series of measurements. The problem  can  only  be  solved if a state vector  is  used.  The  state  vector x 
is  an n element  vector  which  describes  all  the  aspects  of  the  atmosphere  and  measurement  system  that 
affect  the  radiance  measurements.  Typically  the  state  vector  will  contain  profiles  of  temperature  and 
composition  represented  by  a  finite  set  of  vertical  levels.  By  describing  the  state  using  a  finite  length 
vector,  the  retrieval  task  has  been  made  tractable. 

Measurements  are  also  grouped  into  vectors, y;. Multiple  vectors  are  used,  as  this  explicitly  indicates 
which  sets  of  measurements  are  independent  (i.e.  have no covariance),  and  which  are  interdependent. 
For  example, it is  possible  that  radiometric  noise  may be correlated from channel  to  channel  within 
an MLS spectra1  band,  but  not  between  radiometers.  In  such  a  case, one would  use  separate  vectors to 
represent  the  radiances  from each band. The covariance  of  the  measurement  vectors  is  represented  by  the 
matrix S;. In  many  cases,  the  measurement  covariance  matrices  are  purely  diagonal.  While  it  would be 
possible  to  thus  split  the  corresponding  measurement  vectors  up into separate  one-element  vectors,  the 
grouping  will  typically  be  maintained  for  clarity.  The  computer  programs  that  implement  the  retrieval 
algorithm  will  ensure  that  unnecessary  calculations  will be avoided  in  these  cases,  by  considering  only 
the  diagonal  elements of the  matrix. 

A  key  component  of  the  retrieval  algorithm  is theforward model,  this is a  calculation  which  gives 
an estimate  of  the  radiances  that  would be observed  by  the instrument,  were  the  atmosphere  in  the  state 
give  by x. 

i; = fi (x> 9 (3.3) 

where i i  denotes an estimate  of  the  vector y;. These  functions  are  typically  discrete  forms  of  the 
radiative  transfer  integration  in  Equation 3.1. The aim  of  retrieval  theory is to  seek  a  value  of  the  state 
vector  which is a  ‘best  estimate’ of the  true  state of  the  atmosphere. The ‘best  estimate’  is  defined  as  that 
which  most  appropriately  fits  the  observed  measurements,  by  giving  the  minimum  value  of  the  quantity 
x 2 ,  defined  by 

This expression  is  simply  the  vector  form  of  the  more  familiar  definition of x 2  in  the  scalar  case  as 
Ci ([oi - pi]/si)*,  where o is the  observed  measurement, p is  the  prediction,  and s is  the  standard 
deviation  of  the  uncertainty  in  the  observed  data.  In  this  case,  the  differences  between  the  measured  and 
fitted  observations  are  weighted  according  to  their  covariances,  and  summed. 

3.2.2  Newtonian  iteration 

Many  different  techniques  exist for finding  the  minima of quantities  such  as x 2 ,  the  most  commonly 
used  method  in  retrieval  algorithms  is  Newtonian  iteration. The Newtonian  minimization  method  gives 
an  iterative  expression  for  the  best  estimate  of x according  to 

where V is  the  vector  derivative  operator 

a 
ax; [VI; = - 9  
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Chapter 3. The EOS MLS measurement  system 

and V2 is  the  matrix  second  derivative  operator 

a 2  
[VZ].. = -. 

11 ax,axj (3.7) 

Note  that  much  of  the  retrieval  theory  literature  refers  to  the  retrieved  estimate  of  the  state  vector  as i, 
with x describing  the  unknown  true  state  of  the  atmosphere.  However,  in  this  document,  due to the  large 
number  of subscripts,  superscripts  and  diacritics  that x will  soon  gain, the 'hat'  has  been  omitted  for 
clarity.  The  exception  is  in  Section  3.2.5  where  the  distinction  between x and i is  important. 

The  parenthetical  superscripts  indicate  values  from  different  iterations. The vector  calculus  identi- 
ties  shown  in  Appendix c. 1, when  applied  to  Equation 3.4 give 

where 

-2 KTS;' [y; - f; (x)] 
i 

V2x2 = 2 CKTSL'K;, 
i 

(3.9) 

(3.10) 

are  known  as  the  matrices  of weightingfunctions (in  some  literature  referred  to  as  the Jacobians) for 
the  measurement  vectors.  Note  that  we  neglect  second  order  terms  here (i.e. those  involving aK;/ax), 
because  we  are  in  an  iterative  process,  assuming  linearity  each  iteration. 

Thus  Newtonian  iteration  can be expressed  as 

r 1 - 1  

The  covariance  matrix  of  the  solution  can  be  shown  to  be  given by 

(3.1 1) 

(3.12) 

3.2.3 The need for virtual measurements 

In  many  cases  the  matrix  inversion  in  Equation 3.1 1 is impossible  as  the  matrix  is  singular. This indicates 
that  the  'direct'  measurements  (radiances  etc.)  have  provided  insufficient  information  to  completely 
determine  the  state  vector;  there  are  some  components  (or,  more  correctly,  eigenvectors) of the  system 
about  which no information  has  been  obtained. 

The  solution  to  this  problem  is  to  introduce virtual  measurements. These  are  additional  measurement 
vectors  included  in  the  retrieval  calculation  in  order  to  assure  successful  matrix  inversion,  and  to  ensure 
reasonable  values  for  comparatively  poorly-measured  aspects of the  system.  In  the MLS case,  as  is 
typical,  these  virtual  measurements  take  the  form  of a  priori estimates of  the  state  vector  or  individual 
components  of  the  state  vector,  constructed  from  datasets  such  as  climatologies. The covariance  of  the 
a  priori information  is  chosen so as  to  limit  the  amount  of  bias in the  resulting  state  vector. 

Introducing a  priori information  in  this  manner  can  lead  to  incorrect  interpretation  of  retrieved 
results. The covariance of the  retrieved  state  vector  should  always be compared  with  the a  priori co- 
variance; if  only a  small  amount  of  error  reduction  has  been  achieved,  this  indicates  that  the  direct 
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3.2. Introduction to retrieval  theory 

measurements  (i.e.  radiances etc.) have  failed to contribute  significant  information  to  the  knowledge of 
the  state  vector. 

In  order to simplify  later  results,  the a priori information  is  explicitly  separated  from  the  other 
measurement  vectors. The a priori state  vector is denoted  by a, with  covariance  given by the  matrix Sa. 
The  forward  model  for  this  quantity is simply f,(x) = x giving  a  corresponding K matrix  equal  to  the 
identity.  This  gives  a  modified  form of Equation 3.1 1 as 

The  solution  covariance  is  in  this  case  given  by 

r 1 - 1  

(3.14) 
L i J 

These  equations  form  the  basis  of  all  the  MLS  retrieval  calculations. 
In  some  retrieval  situations  there  are  elements  of x for  which  the  use  of  an a priori as  a  virtual 

measurement  is  inappropriate,  for  these  elements,  the  corresponding  rows  and  columns  of S;' are  set  to 
zero '. 

3.2.4 Retrieval phases and errors on  constrained  quantities 

In  many  cases,  the  retrieval  calculations  are  performed  in  separate  phases,  with  the  results  from  one 
phase  being  used  in  the  forward  model  calculations  for  later  phases.  For  example,  in  the  UARS  MLS 
data  processing  algorithms,  a  retrieval of temperature  and  tangent  point  pressure  was  obtained  from  the 
63 GHz O2 radiances.  These  results  were  then  used  in  retrievals of the  constituent  information  from  the 
other  spectral  bands. 

However,  when  performing  a  retrieval  calculation  in  separate  phases,  the  measurement  covariance 
matrices Si should be modified  to  allow  for  the  fact  that  there  are  uncertainties  in  the  knowledge  of  the 
previously-retrieved  quantities. The modification  should  be  made  according  to 

(3.15) 

where Sc describes  the  covariance  of  the  quantities c that  were  previously  retrieved  (i.e.  the  covariances 
obtained  from  Equation 3.14,) and  the  matrices KiLCl are  the  weighting  functions  for  these  quantities, 
such  that 

(3.16) 

This  calculation  is  sometimes  referred to as constrained  quantity  error propagation. 
As described  in  Section 3.2.1, in  many  retrieval  problems  the  measurement  covariance  matrices  are 

diagonal  (or  can  be  assumed  to  be  diagonal  to  a  reasonable  level of approximation.)  This  is  the  case  for 
most  of  the MLS spectral  bands  (see  the  discussion  in  Sections 3.5.3 and 3.5.4). If a  diagonal  covariance 
matrix  can  be  assumed,  then  computation  time can be  saved  by  optimizing  the  algorithm  to  take  advan- 
tage of this  fact.  However,  a  constrained  quantity  error  propagation  calculation  will  typically  produce 
a new  set  of  measurement  covariance  matrices  that  are  not  diagonal. As these  measurement  covariance 

'Note that  strictly  speaking,  this  makes S i '  singular. A more  detailed  discussion of the  construction of the a priori state 
vector  and  its  covariance  matrix is given  in  Section 4.2.3. 
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matrices  have  to  be  inverted  as  part  of  Equations 3.13 and  3.14,  this  can  represent  a  significant  amount 
of  computational  effort.  In  particular,  in  the case where  the  number of measurements  greatly  exceeds 
the  size of the  state  vector  (as  in  the  MLS  case), it is  generally  preferable to avoid constrained  quantity 
error  propagation.  Instead,  the  most  efficient  approach  is  to  retrieve  all  the  elements  of  the  state  vector 
simultaneously,  using  all  the  measurement  vectors.  In  this  manner,  the  measurement  covariance  matri- 
ces S i  remain  diagonal.  This  does  not  preclude  the  use  of  phasing,  however.  Phase  can be implemented 
in  a  different  manner,  such  that  more  quantities  are  added  to  the  state  vector  each  phase,  rather  than 
considering  a  completely  different  set  of  quantities  each  phase.  Sections  4.4.2  and  7.1  deal  with  these 
issues  in  more  detail. 

3.2.5 Diagnosing retrieval performance 

Averaging  Kernels 

When  examining  the  results  of  a  retrieval  calculation it is  important  to  check  the  retrieved  error  estimate 
and  compare  them  with  any a priori information  as  outlined  in  Section  3.2.3.  One  way  in  which  to do 
this  comparison is to  look  at  the  averaging kernel matrix. This is  defined  as 

(3.17) 

where  for  the  sake  of  this  discussion, x is  the  true  state  vector,  with ri as  the  retrieved  state  from  Equa- 
tion  3.14.  In  this  calculation,  as  well  as  distinguishing  between  the  true  and  retrieved  state  vectors x and 
2, it is  necessary  to  distinguish  between  theforward model f; = ii (k), which  provides  an  estimate  of  the 
observed  radiance  given  an  estimate of the  state  vector,  and  theforwardfunction yi = fi (x), which  de- 
scribes  the  actual  physical  process  taking  place  in  the  atmosphere,  aspects  of  which  (e.g.  spectroscopic 
constants)  are  uncertain. 

A describes  the  sensitivity  of  the  retrieval  to  the  true  atmospheric  state,  as  opposed  to  its  sensi- 
tivity  to  the a priori. One  could  consider  it  as  the  ‘ratio’  of  the  information  contributed  by  the  direct 
measurements  compared to the  total  contributed  by  both  the  direct  measurements  and  the a priori. 

Columns  of  the A matrix  represent  the  response  of  the  retrieval  system  to  a  ‘delta  function’  distur- 
bance  in  the  atmosphere  (i.e.  a  change  in  a  single  element  of x.) Rows of the  matrix  indicate  the  amount 
each  element  of  the  true  state  vector  has  contributed  to  the  retrieved  estimate. 

The  use of x 2  as a diagnostic 

In  addition  to  examining  these  quantities,  the x 2  value  for  a  retrieval  (or  for  each  measurement  vector 
independently)  should  also  be  examined.  Ideally,  the  value  of x 2  should  be  about m, where m is  the 
number of elements in the  measurement  vector(s)  under  consideration ( x 2  is  sometimes  divided  by m 
to  yield  a  ‘normalized’ x 2  value.) 

A value of x 2  significantly  larger  than m indicates  that  the  radiance  measurements  have  not  been fit- 
ted  to  a  sufficient  level of accuracy.  This  can  be  due  to  errors  in  the  forward  model, or poor  convergence 
in  the  retrieval  algorithm. A x 2  significantly  lower  than m on the  other  hand  usually  indicates  that  the 
measurement  precisions  used  are  too  pessimistic. 

3.2.6  Other  minimization techniques 

In  many  cases,  (e.g. for some  of  the  MLS  observations)  the  retrieval  calculation  is  sufficiently  linear  that 
a  small  number of Newtonian  iterations  can  yield  the  correct  result.  However,  in  some  cases,  such  as 

10 chaptcr3.1ex v1.I I 
October 6, 1999 EOS Microwave Limb Sounder 



3.3. Radiance  measurements 

those  where  the  system  is  moderately  non-linear,  and  the  initial  value  of  the  state  vector  is  comparatively 
far  from  the  solution,  other  techniques  may  be  more  appropriate. 

The  steepest  descent  approach  is  a  simple  algorithm  which  makes  small  steps  each  iteration  in  the 
direction of the  steepest  descent  of  the  cost  function (x2 in  this  case.) 

where y is  a  scalar  value  describing  the  size  of  step  to  be  taken.  This  is  typically  a  slow  algorithm,  as  it 
takes  no  advantage  of  possible  linearity  in  the  system. 

The Marquardt-Levenberg  approach  is  faster,  as  it is a  combination of the  ‘cautious’  steepest  de- 
scent  method  and  the  ‘aggressive’  Newtonian  method. As the  iterations  proceed,  and  the  solution is 
approached,  the  steps  taken  each  iteration  become  smaller,  making  linearity an increasingly  better  as- 
sumption,  and  allowing  the  minimization  to  become  more  aggressive. The iterations  proceed  according 
to 

X(‘f1) = x(r) - [yI  + v x ] x . 2 2 - 1 v  2 (3.19) 

For  small  values of y this is equivalent  to  the  Newtonian  iteration  in  Equation  3.5,  while for large 
values  of y this is equivalent  to  steepest  descent  with  a  small  step  size. As the  iterations  proceed  the 
value  of y is  changed  according  to  the  convergence  behavior.  If x2  increases,  the  new  value of x is 
rejected,  and y is  increased so that  a  more  cautious  step  can  be  explored.  If x2  decreases,  then  the  new 
value of x is  adopted  and y is decreased so that  the  next  iteration  is  more  aggressive.  The  use of the 
Marquardt-Levenberg  method  can  lead to more  stable  convergence  in  most  moderately  non-linear  cases 
than  Newtonian  iteration.  For  more  information  on  the  Marquardt-Levenberg  scheme,  see  Press et al. 
1986;  for  applications to retrieval  theory  see  Marks  and  Rodgers  1993. 

3.3 Radiance  measurements 

The MLS  instrument  makes  observations of microwave  radiation  in  many  different  regions of the  spec- 
trum,  covering  the  frequency  range  from 1 18  GHz  to  2.5 THz. The instrument  consists  of  seven  mi- 
crowave  radiometers,  covering  five  different  spectral  regions. The signals  from  the  radiometers are 
passed  onto  various  spectrometers.  The  spectral  coverage of the  instrument  is  shown  in  Figure 3.1. In 
the  MLS  data  processing,  radiance  is  measured  in  Kelvins  and  considered  to  be  a brightness  tempera- 
ture. This is a  quantity  proportional  to  the  observed  radiance,  which,  in  the  long  wavelength  limit,  is 
equal  to  the  temperature  of  the  blackbody  producing  the  observed  radiance. 

In  the  standard  operational  mode,  the  instrument  makes  one  complete  vertical  scan  of  the  GHz 
antenna  over  tangent  heights  between  2.5  and  62.5  km  in  20 s. The THz antenna  scans  from 15.0 to 
62.5  km  in  the  same  time  period.  Approximately  4.7 s are  spent  in  calibration  and  antennae  retrace 
activities,  giving  a  repeat  period  of  about  24.7 s. Each  scan/calibrate/retrace  activity  is  called  a ma- 
jor frame. The lengths of the  major  frames  will  vary  slightly  in  increments of 1/6 s to  ensure  that  the 
latitudinal  distribution of the  scans  is  the  same  from  orbit  to  orbit,  and  between  both  ascending  and 
descending  orbital  segments,  and  the  northern  and  southern  hemispheres.  The  20 s limb  scan is a  con- 
tinuous  movement, as opposed  to  the  ‘stop  and  stare’  scan  that  was  used  in  UARS  MLS.  During  the 
scan,  120  radiance  integrations  are  performed,  each of length  1/6 s. These  integration  periods  are  known 
as minor  frames. 

3.3.1 Behavior of the radiances 

Figure  3.2  shows  a set of calculated  radiances  from  two  of  the EOS MLS  spectral  bands. The form 
of the  radiance  curves  shown  in  the  left  hand  plot  is  typical of the  observations  from  limb  sounding 
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3.3. Radiance  measurements 

1 

0 100 200 300 0 100 200 300 
Radiance /K Radiance /K 

Figure 3.2: (color)  These  plots  show  example  radiance  profiles  for two different  spectral  bands 
in EOS MLS. The R1A:  118. B 1 F  : PT band is targeted  at an 0 2  line,  and  used  to  measure  tem- 
perature  and  tangent  pressure.  The R2  : 1 9  0 . B2F : H 2 0  band  is  used to measure H20. Only the 
radiances  for  the  first 13 channels  in  each  band  have  been  shown.  The  red  lines  correspond  to  the 
channels  closest to the  centers  of  the  spectral  lines, with the  purple  lines  corresponding  to  those  on 
the  line  wings.  See  Appendix E for a  description of  the EOS MLS signal  designation  nomenclature. 

instruments. At high  tangent  point  altitudes,  the  atmospheric  density  along  the  limb  path  is  very  low, 
so little  emission  is  observed. As the  ray  path  descends  through  the  atmosphere,  emission  becomes 
stronger as the  atmosphere  becomes  thicker.  Eventually,  the  atmosphere  becomes  sufficiently  opaque 
that  emission  from  lower  regions  in  the  atmosphere  is  absorbed by air  at  higher  altitudes,  and is thus 
never  observed  by  the  instrument.  In  these  circumstances  the  radiances  are  said  to be saturated or 
blacked  out, this  is  the  cause  of  the  knee  in  the  radiance  curves. The saturated  radiances,  are  a  measure 
of  the  temperature  of  the  region  of  the  atmosphere  where  the  saturation  takes  place.  Sometimes,  the 
radiances  continue  to  increase or decrease  slightly as the  tangent  ray  path  is  scanned  further  down. 
This is a geometrical  effect. As the  ray  descends,  the  path  length to a  given  height  decreases,  thus 
the  saturation  occurs  at  a  different  height in the  atmosphere,  leading  to  slightly  different  radiances, 
depending  on  the  form of the  temperature  profile.  The  channels  closer to the  line  centers  will  saturate 
at higher  altitudes  than  those on the  wings  of  the  lines, as the  absorption  at  the  frequencies  closer  to  the 
line  centers  is  stronger. 

The curves  shown  in  the  right  hand  plot  in  Figure 3.2, corresponding to the  183 GHz Hz0 obser- 
vations,  show a slightly  different  behavior.  In  this  case  two  separate  saturation  process  occur. This is 
simply  explained  by  the  fact  that  these  observations  are  made by a 'double  sideband'  radiometer.  The 
MLS radiometers  work  on  the  microwave  heterodyne  technique;  they  output  an intermediate  frequency 
(IF) signal,  corresponding  to  the  observed  signal  with  the local  oscillator (LO)  frequency  subtracted. 
The negative  frequency  components  are  folded  over  into  positive IF space  with a 180" phase  shift.  This 
is  described  in  Figure  3.3. The intermediate  frequency  signal  is  given  by 

(Intermediate  frequency  signal) = CY (Upper sideband  signal) + 
(1 - a )  (Lower sideband signal) . (3.20) 

The sideband  ratio, C Y /  ( 1  - C Y ) ,  is  measured  during  prelaunch  calibration. 

~~~~ ~~ ~~ ~~ 
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Chapter 3. The EOS MLS measurement  system 

Lo1 
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Figure 3.3: This  figure  shows the action of the  microwave  heterodyne  technique.  The  observed 
radiances are combined in a non-linear  element  such  as a diode, with a Local Oscillator (LO) 
signal.  The  resulting Intermediate Frequency (IF) signal is a combination of the signals in the 
upper  and  lower  sidebands. 

3.3.2 The importance of tangent pressure 

As shown  in  Figure 3.2, the  radiances  observed by MLS  depend  strongly  on  the  atmospheric  pressure 
at the ray  tangent  point.  This  is  due  both to the large  increases  in  atmospheric  density  with  decreasing 
altitude,  and to the  fact  that  the  spectral  lines  being  measured  are,  at  most  altitudes,  pressure  broad- 
ened  (an  effect  caused  by  collisions  between  emitting  molecules).  At  higher  altitudes  (in  the  mid to 
upper  mesosphere),  pressure  broadening  becomes  less  significant,  and  Doppler  broadening  due to the 
distribution of molecular  velocity  takes  over  as  the  dominant  effect. 

Quantities  such  as  radiance  and  tangent  pressure  are  somewhat  distinct  from  explicitly  geophysical 
quantities,  such as temperature  and  composition,  in  that  they  are to a  greater or lesser  extent  dependent 
on the  state  of  the  instrument  (e.g.  the  pointing of  the  antenna.)  These  are  often  referred  to  as minor 
frame  quantities, in  that  they  vary  from one MLS  minor  frame to the  next.  Where it is  useful to draw 
distinctions  between  such  quantities  and  strictly  geophysical  parameters,  an  arrow  will be drawn  over 
the relevant  symbol,  thus  the  tangent  point  pressure  for  minor  frame i would be represented  by  the 
symbol 6;. 

3.4 Geometric  measurements 

In addition to microwave  radiances,  the  MLS  instrument’s  knowledge  of  the  altitude  of  the  limb  tangent 
point z i ,  can be considered as a  measurement.  Given  knowledge  of  the  tangent  point  pressures p ,  the 
atmospheric  temperature  profile as a  function  of  pressure T ( p ) ,  and  the  altitude ho of a  fixed  pressure 
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3.5. Construction of the MLS ‘state  vector’ 

surface PO, a  hydrostatic  integration  will  serve  as  a  forward  model  for  such  measurements. 

(3.21) 

where g is  the  acceleration due to  gravity  and R is  the  atmospheric gas ‘constant’. 
The use  of  the  additional  information  provided  by  these  measurements is essential  in  supplying 

tangent  pressure  information in regions  where  the  radiances  are  largely  independent  of  pressure  such  as 
the  lower  altitude  regions  where  the  radiances  are  saturated. 

The problem  with  this  construction  of  the  forward  model  is  that  the  quantity g is  not  a  function  of 
pressure, but  of geometric  altitude.  One  could  express g as  a  function  of  pressure,  however  a  simpler 
approach  is  to  recast  this  expression  as one for  the  geopotential  height Z of  the  tangent  point,  defined  as 

+ 

z = z o + - /  l h  g d h ,  

g0 ho 
(3.22) 

where go is  a  nominal  value  of g (usually  taken  as 9.80665 rnsp2.)  When  expressed  in  terms  of  geopo- 
tential  height,  Equation  3.21  becomes 

(3.23) 

Equation  3.23  can  thus  form  the  basis of a  forward  model  if  the  Level  1B  tangent  point  altitude  is 
converted  into  geopotential  height  (a  well  understood  and  documented  calculation).  These  geopotential 
heights  are  then  used  as  the  measurements,  rather  than  the  geometric  altitudes. 

There is  however  an  additional  complication,  due to the  refraction  of  the  tangent  ray  by  the  at- 
mosphere,  this  leads  to  a  difference  between  the  true  ray  tangent  point  altitude  (and  thus  geopotential 
height)  and  the  ‘unrefracted’  tangent  point  altitude  as  determined  by  geometry.  The  magnitude  of  this 
refraction  is  a  function  of  atmospheric  density  (and  thus  temperature and pressure),  and  humidity. 

This effect  leads  to  a  conceptual  problem  with  the  measurement  system,  in  that  the  measurements 
depend  on  the  value  of  the  state  vector,  which  is  not  strictly  speaking  valid  in  retrieval  theory  (only 
the  predicted  measurements  obtained  from  the  forward  model  should  depend  on  the  value  of  the  state 
vector.)  This  is  really  only  a  matter  of  semantics,  the  situation  can  easily  be  remedied  by  defining 
the  measurement  as  a scan residual, the  difference  between  the  hydrostatic  and  geometric/refraction 
calculations  of  tangent  point  geopotential  height,  defining  the  values of this  measurement  to be zero. 
The forward  model  will be constructed  to  compute  this  difference. The covariance  matrix  for  this 
measurement  will  be  constructed  as  a  diagonal  matrix,  with  the  diagonal  values  being  based on the 
precision  reported  on  the  Level  1B  tangent  point  altitude  data,  and no off  diagonal  correlations. 

3.5 Construction of the MLS ‘state  vector’ 

Section  3.2  gave  an  introduction  to  the  concept  of  the  ‘state  vector’,  the  vector x that  describes  all 
the  aspects  of  the  atmosphere  and  measurement  system  that  can  affect  the  direct  measurements. The 
construction  of  the  state  vector is an  essential  part  of  the  design  of  any  retrieval  system;  its  contents 
need  to  be  chosen  carefully to provide  a  complete  set  of  independent  parameters  that  describe  the  whole 
system.  This  section  discusses  the  construction  of  the  state  vector  for  the MLS retrieval  system. 
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3.5.1 State vector selection  methodology and implementation 

ChaDter 3. The EOS MLS measurement  system 

The  construction  of  the MLS state  vector is performed  by  studying  the  measurement  system  with  refer- 
ence to a set of simple  criteria. 

Firstly,  the  experimental  objective is placed  in  the  state  vector. That is profiles  of  atmospheric  tem- 
perature T, geopotential  height Z and  composition  (concentration  of  targeted  gases) f on  fixed  pressure 
surfaces. 

At  this  point,  any  superfluous  information in the  state  vector is removed.  In  this  case  the  temperature 
information is redundant  with  most  of  the  geopotential  height  profile as, given  profiles  of  temperature 
and one geopotential  height,  the  entire Z profile  could  be  computed  using  hydrostatic  balance.  For  this 
reason,  the  vector is reduced so as to  contain  only  one  geopotential  height. 

Next,  the  primary  source  for  direct  information  about  the  state  vector is identified.  In  the MLS case, 
this  direct  information is the  radiance  observations  and  the  scan  residual  measurements ?. 

The  next  set  of  quantities  to be placed  in  the  state  vector  represents  any  additional  information 
needed  in  order  to  characterize  the  direct  measurements.  In  this  case, it is clear  that  tangent  pressure 
information  for  each  radiometer  is  essential if  forward  model  estimates  are  required  for  both  radiances 
and  scan  residual  measurements.  In  order  that  the  calculations  may be more  linear,  this  quantity  is 
represented  by  the  vector 5 = - log,,  [Tangent  pressure / hPa]. 

The  use  of  tangent  pressure is slightly  complicated  by  the  fact  that  the  MLS  instrument  performs  a 
continuous  scan.  The  quantity  stored  in  the  state  vector  represents  the  tangent  point  pressure  at  some 
prescribed  time  within  the  integration  period.  The  forward  model  process  will  perform  the  appropriate 
interpolations  and  convolutions  to  account  for  the  movement  of  the  tangent  point  during  the  integration. 

This  whole  process  is  somewhat  iterative,  in  that  these  new  quantities  may  themselves  be  dependent 
on further  additional  information.  For  example,  the  estimates  of  tangent  pressure  for  each  radiometer 
can be dramatically  improved  given  knowledge  of  the  angular  offsets  between  the  various  radiometers 
and/or  modules  in  the  case  of  the  GHz/THz  module  offsets. Thus these  offsets  are  included  in  the  state 
vector.  These  offsets  are  essentially  constant,  although  in  the  case  of  the  offset  between  the  GHz  and 
THz  modules,  there  may  be a slight  orbital  dependence.  Additional  redundancy  may  develop  as  more 
quantities  are  introduced  into  the  state  vector. It is  important  to  recognize  the  source of this  redundancy 
and  attempt  to  eliminate it. 

A  pictorial  representation  of  this  whole  process, as applied  to  the EOS MLS  measurement  system  is 
given  in  Figure 3.4. 

As  the  state  vector  is  constructed,  attention  needs  to be paid  to  the  possible  need  for a priori values 
for  the  elements  added.  In  the case of the 5 components,  any a priori values  would  need to be  based 
on the  observed  Level 1B tangent  point  height  information.  Clearly, as these  heights  are  being  used 
(in  the  form  of  geopotential  heights) as direct  measurements as described  in  Section 3.4, the  use  of  an 
a priori for f would  result  in  the  use  of  the  same  information  twice.  In  fact,  an a priori estimate  for 
5 is  unnecessary, as the  measurement  system  already  has  enough  information  to  completely  describe 
5. The  Level IB tangent  point  height,  and  the  temperature  elements  of  the  state  vector  provide  enough 
information  to  describe  values  of 3 even  in  cases  where all the  radiances  for a given  minor  frame  are 
missing. 

+ 

3.5.2 Representation within the state vector 

As  described  in  Section 3.2.1, the  state  vector is designed  to  represent  the  functional  form  of  the  atmo- 
spheric  temperature  and  composition.  In  the  MLS  case,  this  functional  form  is  constructed  using a set 
of basisfunctions. For  example, in the  case of  the  atmospheric  temperature  profile,  the  state  vector  is 

~~ 
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3.5. Construction of the MLS 'state  vector' 
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Figure  3.4: A pictorial  representation  of  the EOS MLS state  vector  selection  process 
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defined  according  to 

ChaDter 3. The EOS MLS measurement  svstem 

where z is the  log  pressure  vertical  coordinate2 and T ( z )  is the  functional form of  temperature. Ti are 
the  components  of  the  state  vector  describing  the  temperature,  and I ] ;  ( z )  are  the  basis  functions. 

For  most  of  the  MLS  species,  the n basis  functions 1]0 . . . qn-l are  defined  as 

(3.25) 

10 otherwise 

A sample  set of  such functions  are  shown  in  Figure 3.5. These  functions  give  a  profile  whose 
functional  form is equivalent  to  linear  interpolation  in z between  the  values T, on surfaces z i ,  with  no 
extrapolation  beyond zo or zn-l. 

For  some  species,  this  linear  interpolation  form  may  not  describe  the  true  atmospheric  profile  with 
sufficient  accuracy.  An  example  of  this is the  case  of  tropospheric Hz0 concentration.  The  vertical 
profile  of H20 in  the  upper  troposphere  shows  rapidly  decreasing  abundance  with  increasing  altitude. 
In  order  to  accurately  capture  this  feature,  alternative  representation  bases  may be appropriate.  In  the 
case of UARS MLS, an  exponential  form of basis  was  used  to  capture  these  features. This was  achieved 
by  retrieving  a  state  vector  describing  a  linear  basis  in  relative  humidity,  which  is  equivalent  to  an 
exponential one in mixing  ratio  space.  A  similar  approach  will  be  implemented  for EOS MLS,  though 
the  intended  increase  in  the  state  vector  resolution  from 6 to 12 surfaces  per  pressure  decade  will  also 
improve  the  accuracy of the  representation. 

3.5.3 Continuum emission and 'baseline' 

Most  of  the MLS observations  rely on measurements  of spectral contrast, that  is,  the  retrieval  algo- 
rithms  determine  the  atmospheric  composition  by  effectively  comparing  the  radiances  near  the  center  of 
a  spectral  line  with  those in the  wings.  The  absolute  value of the  radiances  observed is not  typically  as 
important a factor  in  the MLS measurement  system.  There  are  many  factors  that  determine  such  spec- 
trally  flat  contributions  to  the  MLS  radiance  observations.  The  term  'flat' in this  context  implies  signals 
that  may  vary  between  the  spectral  bands,  but  will  vary  only  slowly  within  the  bands.  Unexplained 
spectrally  flat  signals  can  arise  in  the  measurement  system  from  many  different  sources,  these  broadly 
divide  into  instrumental  and  forward  model  factors. 

Instrumental  contributions  include  unmodeled  blackbody  emission  from  the MLS antenna,  and  un- 
certainties  in  the  knowledge  of  the  instrumental  field  of  view. In the  case  of  the  field  of view,  an 
important  factor is the  uncertainty  in  the  signal  received  through  sidelobes of the  antenna  pattern. 

The  main  mechanism  whereby  spectrally  flat  errors  can  be  introduced  into  the  forward  model  calcu- 
lation  is  emission,  absorption  or  scattering  by  species  whose  abundance is not  known  to  a  high  enough 
accuracy  (e.g.  emission  from  cirrus  ice  in  the  upper  troposphere),  and/or  whose  emission is not  well 
known  at  the  frequencies  under  consideration  (for  example  water  vapor  in  the  lower  stratosphere / upper 
troposphere.)  While  the  water  vapor  profile  from  about 500 hPa  upwards  will  be  measured  by  MLS, 

2Do not  confuse z with f ,  z is a fixed  vertical  coordinate, is a  set of state  vector  elements  describing  the  pressure  at  the 
limb  path  tangent  points. 
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3.5. Construction of the MLS 'state  vector' 

0 1 

Figure 3.5: (color)  This  figure  shows  an  example of the  representation  bases  used  in  the MLS state 
vector. The  functions vi are  shown by the  colored  lines,  corresponding to log  pressure  heights z i .  
The  vertical  resolution  need  not be constant,  and in this  case,  the  resolution  halves  for  the  layer 
23 -+ 24. 
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Chapter 3. The EOS MLS measurement  system 

the  spectroscopy  of  the Hz0 emission  is  not  sufficiently  well  known  to  account  for  the  spectrally  ‘flat’ 
radiance  at the lower  altitudes  with  an  accuracy  that  is  consistent  with  the MLS measurement  accuracy. 

It  is possible  to  model  these  errors  through  the  use  of  off  diagonal  terms  in  the MLS radiance 
measurement  covariance  matrices.  However,  as  explained  in  Section 3.2.4, the  computational  effort 
required  when  dealing  with  such  covariance  matrices is vast. A more  practical  approach  is  to  include 
elements  in  the  state  vector  that  model  such  errors,  and  retrieve  them.  This is the  solution  adopted  in  the 
MLS processing. 

The  instrumental  contributions  are  typically  best  characterized  in  terms  of  an  absolute  radiance 
offset  term  in  the  forward  model,  while  the  forward  model  effects  are  best  accounted  for  by  retrieving  a 
spectrally  flat  extinction  coefficient  on  fixed  pressure  surfaces.  Clearly,  these  two  quantities  are  highly 
correlated,  and  retrieving  an  extinction  profile  and  a  minor  frame  dependent  radiance  offset  would  lead 
to a  highly  degenerate  system. The approach  adopted  will be to  retrieve  the  radiance  offset on a  once 
per  major  frame  basis  (or  perhaps  coarser)  with  the  extinction  only  retrieved  below  some  altitude,  (e.g. 
10.0 hPa),  above  which it is  expected  to be small. This should  allow  good  separation  between  the 
instrumental  and  the  forward  model  contributions. 

3.5.4 Other  sources of correlated radiance error. 

In  addition  to  the  ‘baseline’  terms  discussed  above,  there  are  additional  mechanisms  which can produce 
correlations  in  the  errors on MLS  radiance  measurements.  One  such  is  the  so-called 1 /f noise  described 
in Jamot 1999.  In  most  cases,  this  effect  is  well  modeled  by  the  retrieval  of  the  baseline  terms  described 
above.  One  possible  exception  may be cases  where  the  spectral  signal  being  sought  is  very  weak. These 
are  the  measurements  that  will  be  used  to  derive  the  ‘noisy’  products.  For  a  full  description  of  the  issues 
involved  with  these  measurements,  see  Chapter 5. 

Several  of  the  spectral  bands  in  the  MLS  instrument  overlap,  as  shown  in  Figure  3.1, for example 
R2 : 1 9  0 .  B2 F : H 2 0  and R 2  : 1 9  0 . B3 F : N 2 0 .  The  noise  on  the  MLS  radiances  is  dominated  by  noise 
from  the  radiometers,  rather  than  noise  from  the  individual  spectrometers.  This  means  that  there  will  be 
a  correlation  in  the  errors  on  individual  radiances  from  these  two  bands. If this  is  not  modeled  correctly, 
the  retrieval  algorithm  will  draw  false  inferences,  believing it has  two  independent  measures  of  the 
atmosphere,  when  in  fact  their  noises  are  identical. 

A full,  non-diagonal,  treatment  of  such  cases  is  impractical,  as  described  above.  However,  there 
are two possible  alternative  solutions.  One  could  approximate  the  covariance  matrix  by  increasing  all 
the  diagonal  elements  by  a  factor of A. This  prevents  the  retrieval  algorithm  reading  too  much  into 
the  measurement  system,  but  is  an  approximation,  as it does  not  indicate  the  coupled  nature of  the 
problem.  The  prefered  approach  is  simply  to  only  use  data  from one of  the  two  channels  in  regions 
of  overlap.  Typically  one  would  choose  to  keep  the  channels  with  higher  frequency  resolution.  There 
would  probably  remain  either  small  regions  of  overlap, or small  gaps,  due  to  the  lack  of  complete 
alignment  in  the channels  for  the two bands,  but  these  are  of  little  consequence. 

The  spectral  response  of  the  MLS  signal  channels  is  not  completely  rectangular  as  it  would  be  in  the 
ideal  case.  This  leads  to  a  very  slight  overlapping  of  spectral  response  between  adjacent  channels.  While 
the  detailed  spectral  response  of  the  channels  will  be  considered  fully  in  the  forward  model  calculations, 
the  small  level of correlated  uncertainty  the  overlap  produces  can  safely be neglected  as  the  overlap  is 
very  small. 

3.5.5 A note on ‘state  vectors’ and ‘retrieval vectors’ 

So far the  discussion in this  section  has  assumed  that  all  of  the  elements  of  the  state  vector  will be 
retrieved  by  the  MLS  data  processing  algorithms.  In  reality,  as  described  in  Section 3.2.4, the  retrieval 
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3.6. Observation  geometry 

algorithm  will  proceed  in  separate  phases.  For  example  a  retrieval  of  temperature  and  pressure  may  be 
followed by a  retrieval  of  tropospheric  humidity  and  ozone  abundance,  followed  in  turn by a  retrieval  of 
stratospheric  composition. Thus, as  the  retrieval  progresses,  some  elements of the  state  vector  may  be 
constrained  to  values,  either  taken  from  a  prior  phase, or from  some a  priori information,  as  described 
in  Section  3.2.4. 

In  the  context  of  the  standard  literature  (e.g.,  Rodgers  1976;  Rodgers  1990),  the  ‘retrieved’  and 
‘constrained’  quantities  are  distinguished  by  defining  the  forward  model as 

where  the  vector b describes  the  quantities  that  are  constrained.  In  this  notation,  the  ‘state  vector’ 
described  in  this  section  would  be  the  combined  vector [x, b] (some  times  called  the  ‘forward  model’ 
vector),  while  the  ‘retrieval  vector’  would  be  the  vector x alone. 

In  most of this  document  the  distinction  is  unnecessary, so the  term  ‘state  vector’  will  be  used to 
loosely  refer  to  either  the  ‘retrieval  vector’ or the  ‘forward  model’  vector. 

3.5.6 The proposed state vector for MLS 

The  full  details of the MLS state vector  remain  to  be  clarified.  For  a  summary  of  the  current  proposed 
configuration  see  Appendix B. 

3.6 Observation  geometry 

The EOS MLS  instrument  observes  radiances  emitted  from  the  limb  of  the  earth  in  the  plane  described 
by the  spacecraft  orbit.  This  contrasts  with  the  UARS MLS instrument  which  observed  limb  emission 
perpendicular  to  the  flight  direction.  This  observation  geometry  has far reaching  implications  for  im- 
proving  the  retrieval  algorithms,  best  explained  with  reference  to  Figure  3.6.  This  figure  makes  it  clear 
that  the  radiances  observed  in  an  individual  limb  scan  are  a  function of the  temperature  and  composition 
of the  atmosphere  over  a  range  corresponding  to  several  adjacent  Level  2  profiles.  In  the  UARS  MLS 
case,  while  the  horizontal  scales  involved  were  similar,  spherical  symmetry  was  assumed,  as  there  was 
no  direct  way  to  obtain  information  about  the  horizontal  variability  of  the  atmosphere  along  the  line  of 
sight.  Some  instruments  such  as  the Improved Stratospheric And  Mesospheric  Sounder instrument  on 
UARS  (Taylor et al.  1993),  which  had  the  same  measurement  geometry  as  UARS  MLS,  adopted  a  two 
pass  approach,  whereby  the  profiles  obtained  from  a  first  pass  retrieval  were  mapped  onto  a  grid. The 
horizontal  gradients  of  this  gridded  field  were  then  used  as a priori information  in  a  second  pass  of  the 
retrieval  process  (Dudhia  and  Livesey  1995). 

In  the  EOS MLS case  however,  with  the  instrument  looking  along  the  flight  direction,  much  more 
information  on  the  horizontal  variability of the  atmosphere  along  the  line of sight  can  be  obtained. 
Spherical  symmetry  need  no  longer  be  assumed,  and  the  retrieval  task  can  be  structured to account  for, 
and  provide  information  on,  horizontal  variability  along  the  line  of  sight.  The  issues  raised  by  this  are 
covered  in  detail  in  the  next  chapter. 

3.6.1 ‘Fundamental’ coordinates 

In  constructing  the  state  vector,  it is very  important  to  recognize  which  sets  of  quantities  are  indepen- 
dent,  and  which  are  related.  For  example,  many of the  aspects  of  the  MLS  measurement  system  are 
functions of earth  radius  and  the  acceleration  due  to  gravity g for  a  given  altitude.  However,  both of 
these  quantities  are  themselves  functions  of  latitude  (and  to  a  lesser  extent,  longitude.)  It  is  important 

Retrieval  Processes  Algorithm  Theoretical  Basis 
chapted.texvl.1 I 
October 6,  1999 21 



C
ha

pt
er

 3
. T

he
 E

O
S 

M
LS

 m
ea

su
re

m
en

t  
sy

st
em

 

'V
er

tic
al

'  d
is

ta
nc

e 
I k

m
 

L
 

0
 

0
 - - V

I 
0

 

'V
er

tic
al

'  d
is

ta
nc

e 
I k

m
 

o
b

 
e
 

0
0

 
V

I 

h
F

 
0

 

G
 

0
 

0
 

0
 

tc,
 

V
I 

0
 

0
 

0
 

0
 

I w
 

V
I 

0
 

0
 

i
 

0
 8 s. 8
 

$i
n 

0
 

3
 

R
 5
 z 2
0

 

z 01
 i
o

 
E

lo
 

0
 

0
 

0
 

i
 

i
 

V
I 8 w
 

0
 

0
 

0
 

w
 

V
I 

0
 

0
 

W
 

0
 

0
 

0
 

W
 

V
I 

0
 

0
 

P
 

0
 

0
 

0
 

L
 

22
 

ch
dp

le
r3

.fe
x 

vl
.1

1 
O

ct
oh

cr
 6

, 1
99

9 
EO

S 
M

ic
ro

w
av

e 
Li

m
b 

So
un

de
r 



3.6. Observation geometry 

EOS CHEM / 

\ 

\ 

Non-refracted 
limb ray  path 

Cross section / 

/ 

Figure 3.7: The  observation  geometry of MLS is affected by the  oblateness  of  the  earth,  and  the 
inclination of the  orbit. The  main part of this  figure shows  a  cross  section  in  the 98" inclined  orbital 
plane.  The  master  horizontal  coordinate 4, is  defined  as  the  angle  between  the  normal  to  the  geoid, 
normal  to  the  limb  ray  path,  and  the  equator.  The  radius of the  orbit  and  the  oblateness  of  the  Earth 
have  been  exaggerated  for  clarity. 
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Chapter 3. The EOS MLS measurement  system 

to  acknowledge  this  interdependence,  otherwise  the  retrieval  process  can  exhibit  unphysical  behavior 
due to  the  double  bookkeeping  taking  place.  The  way  to  get  around  this  problem is to  construct  a  set  of 
fundamental  coordinates  for  the  system. 

Clearly,  the  development so far  indicates  that  pressure  is  the  most  appropriate  fundamental  coordi- 
nate  in  the  vertical  direction.  The  appropriate  horizontal  coordinate  should  account  for  the  inclination of 
the  EOS  CHEM  orbit  and  the  oblateness of  the  Earth. It is desirable  to  use  a  coordinate  system  within 
which  the  MLS  scans  are  relatively  evenly  spaced,  as  many  of  the  quantities  used  in  the  forward  model 
will  be  precomputed  on  regular  horizontal  and  vertical  grids.  Clearly  latitude  is  not  an  appropriate  can- 
didate,  as  the  scan  spacing  is  not  constant  in  latitude.  In  fact,  at  high  latitudes  there  is  a  degeneracy  in 
the  latitude  coordinate, due to the  inclination  of  the  EOS  CHEM  orbit. For EOS MLS,  the  coordinate 
4 ,  described  in  Figure 3.7, will be used  as  a  fundamental  coordinate. 
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Chapter 4 
The EOS MLS  Level 2 data  processing  algorithms 

Section  3.6  discussed  the  details  of  the EOS MLS observation  geometry.  A  key  point is that  radiance 
observations  from one scan  are  dependent on the  state  of  the  atmosphere  over  a  horizontal  range of order 
of  a  few  profile  spacings. This fact  provides  a  useful  tool  for  characterizing  the  details of atmospheric 
variability  along  the  spacecraft  flight  direction, if it is explicitly  included  in  the  calculations. 

In  order  to  take  advantage  of  this,  horizontal  homogeneity  cannot be assumed  in  either  the  forward 
model or retrieval  processes. The approach  taken  is to retrieve  the  data  in  blocks  of  contiguous  profiles. 
Such  a  calculation is not  prohibitive, due to  the  comparative  sparsity  of  the  matrices  involved. This 
Chapter  considers  in  detail  the  implementation  of  the  retrieval  calculation  in  this  manner. 

Other  aspects of the  implementation  of  the  retrieval  calculation  are  also  discussed,  including  im- 
proving  the  efficiency  of  the  calculation,  and  its  numerical  stability. 

4.1 A simple  one  dimensional  approach 

Before  discussing  the  full  two-dimensional  MLS  retrieval  system  described  above, it is  helpful  to  con- 
sider  a  simpler  system.  Equation  3.13,  repeated  here,  gives  an  iterative  expression  for  the  retrieval 
operation 

This  simple  retrieval  method  is  a  one-dimensional  approach,  where  all  the  issues  of  the  observation 
geometry  discussed  in  Section 3.6 are  ignored.  Instead  the  assumption is made  that one complete  scan 
of radiance  observations  depends  only  on one atmospheric  profile,  and  that  horizontal  homogeneity  can 
be  assumed. This turns  the  retrieval  calculation  into N separate  individual  profile  retrievals,  where N 
is  the  number  of  profiles  under  consideration.  This  approach  corresponds  exactly  to  the  UARS MLS 
version 5 retrieval  algorithm. 

As this  simple  algorithm  ignores  the  geometrical  issues  raised  in  Section  3.6, it is not  optimum  for 
producing  the  final  geophysical  products.  However  it  can be useful  in  obtaining  a  first  guess  state  vector 
for  use  in  a  later 2D retrieval. It will  transpire  that  this  simple  method  plays  an  important  role  in  the  full 
retrieval  algorithm. 

4.2 Structure  and  sparsity in the  full MLS retrieval  system 

In the  full  MLS  retrieval  system,  profiles'  will be retrieved  in  blocks of length N ,  where N is  expected 
to  be of  order 100, corresponding to a  significant  fraction  of  an  orbit (1 orbit = 240 scans/profiles.) In 
order  to  overcome edge effects,  the  blocks  will  overlap  slightly.  In  this  scheme,  the  state  vector  will 

'In this  discussion  the  term  'profile'  (singular) is taken to refer to a  complete  set of vertical  profiles  of  temperature  and 
composition for a single location on the  globe. 
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Chauter 4. The EOS MLS Level 2 data urocessing  algorithms 

Chunk B ,"""""""- 
I 

I"""""""_ 
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Chunk A """-"""" I 

'PQ-51 'PQ-41 'PQ-31 'fQ-21 '?Q-11 1 xpQ+ll  'PQ+2] I 

Time I profiles I scans 

Figure 4.1: This  figure  shows  an  example of how  the MLS profiles  will  be  retrieved  in  chunks. 
Each  chunk  consists of Q profiles,  with an additional q profiles of overlap (3 in  this  case).  The 
total  number of profiles  in a chunk N is  thus Q + 2q.  Beyond  the  end of each  chunk,  horizontal 
homogeneity  is  assumed,  the  overlaps  are  included  (where  possible)  to  reduce  the  impact of this 
approximation  on  the  retrieved  data.  The  data in the  overlapping  regions will be  compared for 
diagnostic  purposes. For example, xpQl should  be  similar  to x&. 

consist  of N profiles,  with  measurement  vectors  corresponding to M scans.  In  most cases N = M ,  
giving a one to one  correspondence  between  scans  and  profiles.  However,  this  is  not a requirement, 
one  could  construct a state  vector  consisting  of  two  profiles  per  scan, or one  profile  every  two  scans if 
necessary.  Figure 4.1 shows  the N = M arrangement. 

For  the  purposes  of  this  discussion,  consider a system  with  only  one  measurement  vector. The results 
obtained  here  extend  trivially into the multiple  measurement  vector  case. The state vector  consists 
of N profiles xLjl each  of  length n. There  are  additional  state  vector  elements x' which  contain  any 
'constant'  quantities  such as spectroscopy  and  instrument  calibration  (e.g.  sideband  ratios)  which  may 
be sufficiently  uncertain  that  it is appropriate to retrieve  them. 

The goal  of  the  retrieval  algorithm  will  then be to simultaneously  obtain  values for the entire vector 
x. The main  part  of  the  retrieval  calculation is the  computation  of [Sal + KTS;'K] which  is  the  topic 
of  the  next  two  subsections. The next  section  discusses  the  issues  involved  in  inverting  this  matrix. 

4.2.1 The weighting function  matrices 

Along  similar  lines to the  construction  of  the  state  vector, the measurement  vector  consists  of  observa- 
tions  from M scans.  Section 3.6 showed  that  in  the N = M case, the measurements  from  one  scan  were 
affected  by - 5 adjacent  profiles, 2 either  side  of  the  nominal  position.  This  amounts to saying  that  the 
K matrix  has a bandwidth p = 2, such  that Kcaj] = 0 for all l a !  - j l  > p ,  j # 0. As an  illustration, 
consider a simpler  case  where p = 1, and N = 6, here  the  weighting  function  matrix  has  the  block 
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structure 

K =  

- x x x o o o o  
x x x x o o o  
x o x x x o o  
x o o x x x o  
x o o o x x x  
x o o o o x x  

The x symbol  indicates  a  non-zero  block sub matrix,  while 0 indicates  a sub matrix  that  is  identically 
zero. Each row  of  the  matrix  corresponds to a  separate  scan.  The  first  column  indicates  the  weighting 
functions  for the x" information,  while  the  remaining  columns  indicate  profiles 0 - . . N - 1. This type 
of  matrix  is  known as  a  singly-bordered  (i.e. one column  fully  non  zero)  block  band  diagonal  matrix. 

4.2.2  The KTSJ1 K matrix 

As  described  in  Sections  3.2.1  and  3.2.4  the  measurement  covariance  matrix S, is  diagonal. This gives 
a KTS;'K matrix  which is doubly-bordered  block  band  diagonal  with  a  block  bandwidth of 2p. The 
example K matrix  of  Equation  4.2  gives 

- x x x x x x x  
x x x x o o o  
x x x x x o o  

K~S;'K= X X X X X X o 
x o x x x x x  
x o o x x x x  
x o o o x x x  

(4.3) 

4.2.3  The a priuri covariance matrix 

The a priori covariance  matrix  describes  the  uncertainty on the a priori estimate of the  state  vector, or 
a  subset  of  the  state  vector. For the  moment,  consider  a  very  simple  state  vector  containing  a  set  of N 
vertical  profiles  of  atmospheric  temperature on n surfaces.  Define TrCjj)l to be the  temperature  for  profile 
i on surface j .  The  diagonal  elements  of  the  covariance  matrix Sa will  describe  the  uncertainties  on 
the  individual  temperatures. The off diagonal  elements  of Sa describe  the  covariance  between  different 
profileshrfaces according  to 

where hi, h p  are  the  horizontal  coordinates  of  profiles i and p ,  and u j ,  uq are  the  vertical  coordinates  of 
surfaces j and q .  The function f describes  correlation  between  adjacent  profiles  and  surfaces.  Clearly 
f needs  to be symmetric  in  the h and u terms,  and  should  equal 1 if hi = h, and uj = uy. Appropriate 
forms  of f ,  such  as  exponential  decay  can  guarantee  that S is positive  definite. 

While it is  a  slight  limitation  on  the  flexibility  of  the  system,  extreme  efficiency  can  be  obtained if 
the forms o f f  are  restricted  to  those  such  that 

i.e.  cases  where  horizontal  and  vertical  correlations  are  independent.  Clearly,  again, fh and f u  have  to 
be symmetric  in  their  two  arguments,  and  must  evaluate to unity  when  their  arguments  are  the  same. 
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Chapter 4. The EOS MLS Level 2 data  processing  algorithms 

Along  with  this  restriction, S( i , ) ( i j )  is assumed  to  be  independent  of i ,  i.e.  the  temperature  uncertainty is 
a  function  of  height  only, [Sa](;;)(;;) = 0;. 

In  this case Sa can be expressed  as  a  block  matrix  according to 

where  the N x N matrix H is  given  by 

and  the n x n matrix S, is  defined  as 

0,' 

Comparison  of  Equation 4.8 with  Equation 4.4 shows  that Sv can  be  considered  as  the  covariance  matrix 
for an  individual  profile,  with H as  a  matrix  describing  the  horizontal  correlation.  The  matrix  construct 
in  Equation 4.6 is called  a Kronecker  product 

S , = H @ S , .  (4.9) 

The  efficiency  is  gained  by  invoking  the  powerful  identity 

(A @ B)-' = A" @ B-'. (4.10) 

This  allows  for  highly  efficient  computation  and  storage  of S;' in  Equation 3.13. While the  matrix  is 
not  strictly  speaking  sparse,  the  amount  of  information  it  contains  is  very  small,  given  its  size.  This 
leads  to  a  retrieval  system  that  is  comparatively  simple  to  solve. 

This result  also  holds  for  cases  where  the  state  vector is more  complex,  containing  quantities  of 
different  types;  provided one does  not  require  there  to be covariance  between  different  families  of a 
priori state  vector  elements,  such  as  between  temperature  and  ozone  abundance. 

4.2.4 Sparsity  in the individual block sub  matrices 

As well  as  being  sparse  in  the  block  sense,  many  of  the  individual  submatrices  involved  in  the  retrieval 
calculation  will  themselves be sparse.  However,  only  when  the  sparsity  in  a  block  submatrix  is  signifi- 
cant can  appreciable  savings  be  made.  For  example,  the a[Radiance]/a[Composition] submatrices  will 
typically  be  about  50%  zero,  the  possible  savings  to be made  in  not  multiplying  by  zero  in  this  case 
would  easily be outweighed  by  the  burden  of  storing  and  perusing  the  matrix  in  sparse  form. 

One  set  of  block  submatrices  that  will  be  highly  sparse  is  those  involving  the  tangent  pressure < 
quantity.  Each  radiance  will  only be dependent on the  tangent  pressure  for  its  own MIF. Thus,  for  a 25 
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4.3. Solving sparse  matrix  problems 

channel  filter  bank,  with 120MIFs, the  full  matrix  size  would be (25 x 120) x 120 = 32 320,  however, 
only  25 x 120 = 3 000 (0.8%) of  these  values  will be non  zero. This is significant,  as  the 5 quantity, 
having  120  elements,  has far larger  derivative  matrices  than  say  temperature  where 40- 50 elements  per 
profile  are  anticipated. 

4.3 Solving  sparse  matrix  problems 

While  the  matrices  involved  in  Equation  3.13  have  been  shown to be sparse,  this does not  necessarily 
help  matters,  as  the  retrieval  calculation  requires  the  inverse  of  the [Sa' + KTS;'K] matrix  to be com- 
puted.  The  inverse  of  a  sparse  matrix  is  not  necessarily  itself  sparse. It is  possible  to  adapt  Cholesky 
decomposition  (the  standard  method  for  inverting  symmetric  positive  definite  matrices)  to  optimize it 
for  this  sparse  problem.  However,  as  the  inverse  (and  the  decomposition) of  the  sum  of two matrices  is 
not  the  sum  of  the  inverses (or decompositions); no advantage  could  be  made  of  the  Kronecker  product 
structure  in Sa. There are  many  efficiencies  to  be  gained  by  invoking  faster  matrix  solving  methods 
based on iterative  techniques. 

4.3.1 The use of iterative matrix solvers 

The aim  of  the  retrieval  problem  is  to  compute  a  value  for X("+') according  to  Equation  3.13 

This  expression  can be simply  rearranged  to  give 

which is equivalent  to 

Mz = b. (4.12) 

where 
r 1 

(4.13) 

(4.14) 

b = Si '  [a - x(r)] + CKTS;' [y; - f;(x('))] , (4.15) 
I 

An  iterative  matrix  solving  technique  gives  the  value  of z (sometimes  called  the innovation in x) without 
needing  to  explicitly  compute  the  value  of M" . This  approach  can be significantly  more  efficient  than 
a  full  matrix  inversion  based  technique. 

The disadvantage of  this  method  in  the  retrieval  theory  context  is  that,  as  Equation  3.14  showed, 
the M" matrix  describes  the  covariance  of  the  solution  state  vector. If this  matrix is not  calculated, no 
information on the  estimated  uncertainty  of  the  solution  is  forthcoming. 

This does  not  present  too  serious  a  problem.  If  the  iterative  matrix  solver is sufficiently  fast  and 
accurate,  the  solution  covariance  matrix  could be obtained by solving  a  series  of Mz = b problems 
where  the b vectors  were  the  successive  columns  of  the  identity  matrix,  while  still  being  faster  than  a 
'classical'  matrix  inversion  method.  There  is  a  more  appropriate  solution  to  this  problem  which  will be 
discussed  shortly. 

~~~ 
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Chapter 4. The EOS MLS Level 2 data  processing  algorithms 

4.3.2 The conjugate  gradient  method 

The  conjugate  gradient  method  (Golub  and  VanLoan  1996)  is  the  most  efficient  and  commonly  used 
iterative  matrix  solving  technique.  The  aim  of  the  method is to  solve  the Mz = b problem  by  seeking 
to minimize 

+(z) = -Z MZ - z b. ' T  T 
2 

(4.16) 

The  minimum  value  of + = -bTM"b/2 is  reached  at z = M"b. The name  of  the  technique  derives 
from  the  method  by  which  the  successive  search  directions  are  chosen. 

In  the  simpler,  steepest  descent  approach,  separate  one-dimensional  minimizations  are  performed 
each  iteration,  along  the  line of steepest  descent.  This  means  that  each  search  direction  necessarily  has 
to  be  orthogonal  to  the  previous  one,  as  the  previous  iteration  has  specifically  chosen  the  location  where 
the  gradient  along  this  previous  search  direction  was  zero.  This  can  lead  to  very  slow  convergence 
for  many  cases,  where  the  system  is  forced to traverse  back  and  forth  across  a  long  narrow  valley, 
rather  than  straight  down. The problem is that  the  successive  search  directions  are  too  different.  The 
conjugate  gradient  method  uses  a  more  sophisticated  method  to  choose  search  directions,  based  both on 
the  previous  search  directions  and  the  current  residual (Mz - b) vector. 

The  reason  that  the  conjugate  gradient  method  is so suited to this  particular  problem,  is  that it never 
refers  to  matrix M directly;  instead,  each  iteration a user-supplied  function  is  invoked  to  compute  the 
value of Mz. This  function  can  then  be  specially  devised  to  take  advantage  of  all  the  sparsity  and 
structure  in  the M matrix  discussed  previously. 

In  this  particular  case,  great  efficiency  can  be  gained  by  separating  out  the Mz calculation  according 
to 

r 1 r 1 
(4.17) 

L I J J 

numerical 

calculation  can  take  full  advantage  of  the  fact  that S;' is a Kronecker  product,  while  the 
"K;]  z calculation  takes  advantage  of  the  sparsity  of [E; KTS;'Ki]. Further  efficiency andor 
stability  may  be  achieved  by  breaking  down  the  summation  over i ,  though  this  will  depend 

on  the  detailed  sparsity of the  matrices  involved. 
The  method  is  guaranteed  to  produce  the  exact  answer in n iterations,  where n is  the  size  of  the M 

matrix.  However,  for  some  matrices,  notably  those  with  clustered  eigenvalues, or 'close'  to  the  identity 
matrix,  convergence is much  faster. 

4.3.3 The use of preconditioning 

The convergence  properties  described  above  lead  to  the  concept  of  preconditioning.  It is mathematically 
possible  to  rotate  the  retrieval  system,  such  that  the M matrix  is  'closer'  to  the  identity. As described 
above,  this  would  lead  to  faster  convergence  of  the  conjugate  gradient  method.  Of  course, a full  rotation 
computation  would  involve as much  effort as solving  the  matrix  completely, so little  would be gained. 

However, it transpires  that  rotating  the  system  in  this  manner is mathematically  equivalent  to  pro- 
viding,  each  iteration,  the  solution  to a different  matrix  equation Pw = c where P is  the preconditioner 
matrix.  The  preconditioner  matrix  is  one  that  is  'similar'  to M. 'Similar' in this  context is hard  to  define 
precisely,  but  a  typical  preconditioner  matrix  might  be  a  sparser  version  of  the  matrix M. The  matrix P 
must be significantly  simpler  to  solve  than M, otherwise  the  exercise is pointless. 

In  the  case  of  the  MLS  retrieval  system,  an  obvious  candidate  for  the  preconditioner  system  is 
the  simple  one  dimensional  retrieval  approach  described  in  Section 4.1. Other  candidates  include a 
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4.4. Increasina efficiency  in the retrieval  calculation 

trimmed  down  version of the M matrix,  with  many off diagonal  blocks  removed, or a  number  of  similar 
retrievals  to  this  full one with  smaller  values  of N .  It is  also  possible  to  nest  retrieval  algorithms  with 
the  preconditioner  itself  being  preconditioned by a  third  retrieval  algorithm. 

The preconditioner  can  also be used  to  obtain  the  solution  covariance  matrix,  as  being  the  inverse  of 
P, rather  than  of M. As it is  typically  only  diagonal  elements of this  covariance  matrix  that  are  reported, 
the  approximation  involved is comparatively  small. 

The full  derivation of the  preconditioned  conjugate  gradient  calculation is well  established  (see 
Golub and  VanLoan 1996 or  other  texts,) for completeness,  the  details  are  shown  in  Algorithm  4.1. 
This algorithm  has  been  applied to many  different  calculations.  In  particular,  the  Goddard  Space  Flight 
Center Data Assimilation  Office  (DAO),  use  this  method  to  solve  the  matrix  equation  that  forms  the 
basis of their  assimilation  calculation (Data Assimilation  Office  1996). 

Algorithm 4.1: The  preconditioned  conjugate  gradient  method.  Given a symmetric  positive  definite 
n x n matrix M, n element  vectors b and initial  guess z(o), the following  algorithm  solves the linear 
system Mz = b, invoking  another  matrix  solver  for the preconditioner  matrix P. The  parenthetical 
subscripts  indicate values from  different  iterations  of the algorithm. 

k = O  
r(o) = b - Az(o) 
while [r(k) + 03 

Solve P w ( ~ )  = r(k) for w ( ~ ) .  
k = k + l  
i f k  = 1 

P1 = W(0) 
else 

B ( k )  = rTk-l)W(k-l)/r(k-*)W(k-2) 
T 

P(k) = W(k-1) + B(k)P(k-1)  
end 
Compute q ( k )  = MP(k) 
a ( k )  = r(k-I)w(k-l)/P~k)q(k) 
Z(k) = Z(k-1) + q k ) P ( k )  

r(k) = r(k-1) - @ ( k , 9 ( k )  

T T 

end 
z = z(k) 

4.4 Increasing  efficiency  in  the  retrieval  calculation 

Even  when  taking  maximum  advantage  of  the  sparsity of the  matrices  involved,  the MLS retrieval 
algorithm  can be a  time-consuming  calculation. The aim of this  section  is  to  consider  various  approaches 
to  improving  the  speed of the  calculation,  and  to  outline  the  manner  in  which  decisions  would  be  arrived 
at  regarding  which  compromises  are  appropriate  to  achieve  a  given  saving. 

4.4.1 Operation counts 

The key to the  issue  of  improving  the  speed of the  retrieval  calculations  is  the  number of individual  scalar 
operations  required  by  the  algorithm.  However,  the  number  of  operations  required  by  a  calculation  does 
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Table 4.1: A summary of the  operation  counts  required  for  each  outer  iteration of the  retrieval 
method.  The v symbol  indicates  the  number  of  iterations  of  the  preconditioned  conjugate  gradient 
method  required.  The  'independent'  method  retrieves  the N profiles  independently.  The  'full'  and 
'sparse'  methods  both  retrieve  the  profiles  in  blocks of N ,  the  sparse  method  taking  advantage of 
the  simplicity of the  system.  The S, matrix  is  assumed  diagonal,  if  this  is  not  the  case,  the  first 
operation  increases  by a  factor of  at  least m (possibly N m . )  

Operation  Independent  Full  Sparse 

KTSyl xi Nnm, xi N2nm; 'j"; Npnmi 

K ~ S ~  K Nn2rni X i  N3n2mi ' j " i  Np2n2mi 

solve s;' + K~S;'K N n 3  N3n3 v Npn2 [ I 
si1 [a - X] + KTSyl [y - fl N n 2  + Nnm N 2 n 2  + N2nm  Npn2 + Npnm 

not  directly  relate  to  the  time it takes  to  perform  the  calculation on a  computer.  Issues  such as cache 
filling,  parallel  processing  etc.  have a big  impact on the  efficiency  of  a  calculation.  The  operation  counts 
serve  merely as a 'rule  of  thumb'  measure  of  the  size  of  the  task  involved. 

Table  4.1  gives a rough  summary  the  number  of  operations  required  for  the  various  stages  in  the 
EOS  MLS  retrieval  algorithm. The summary  assumes no sparsity  within  the  profile / scan  blocks  at 
either  the  submatrix  level  (e.g.  no  allowance  for  the  fact  that a [ R l A :  11 8 . B 1 F  : PT]/a[C10] = 0) or 
within  the  submatrices  (e.g.  the  issue  with  discussed  in  Section  4.2.4.) 

In  the  MLS  case mi >> n for  all  the  measurement  vectors.  From  this  it  is  clear  that  the  ability  to 
assume  that Si is  diagonal  is  crucial  if  the  algorithm  is  to  be  efficient.  This  factor  rules  out  the  use 
of  constrained  quantity  error  propagation  as  explained  in  Section  3.2.4.  It  is  clearly  more  efficient  to 
attempt  to  retrieve  the  whole  state  vector  from  every  measurement  vector  simultaneously,  as  opposed to 
proceeding  in  separate  phases  and  propagating  errors  for  the  constrained  quantities. 

Given  that  the Si  matrix  will be diagonal,  the  most  computationally  intensive  step  will be the  con- 
struction  of  the KTS;'Ki matrices,  taking Np2n2mi operations  for  each  measurement  vector.  There  are 
several  points  of  interest  to  note  about  this  calculation.  Firstly, it is  linear  in N ,  that  is  to  say,  (ignoring 
the  overlaps)  retrieving  200  profiles  in one single  chunk  will  involve  the  same  computational  effort  as 
retrieving  two 100 profile  chunks.  This  means  that  the  size  of N is limited  only  by  the  memory  capacity 
of  the  computer  used.  Secondly,  while  the  operation is linear  in mi, it  is  quadratic  in n and p .  While p ,  
being  geometrical  is  hard  to  control, n can be changed  easily,  being  a  factor  of  the  vertical  resolution  and 
range  of  the  state  vector  quantities.  Being a quadratic  term, a factor  of two increase  in  performance  can 
result  from  removing  only  30%  of  the  elements  of x. mi can  also be changed  fairly  easily  by  removing 
or combining  radiances  that  contribute  little  information  to  the  system. 

4.4.2 Phasing revisited 

Although  the  use  of  constrained  quantity  error  propagation  has  been  ruled  out  on  the  grounds  of  being 
too  computationally  intensive,  this  does  not  necessarily  rule  out  the  use  of  retrieval  phasing.  Phasing 
can  still  be a very  useful  tool  in  the  algorithm.  However,  unlike  in  previous  descriptions,  the  previously 
retrieved  quantities  are  not  constrained,  rather  new  items  are  added  to  the  pool  of  retrieved  quantities. 

In  this  manner,  the  more  non-linear  quantities  (tangent  pressure  and  temperature  in  particular),  that 
will  require  more  iterations for convergence  can  be  retrieved  alone in the  earlier  phases.  The  later  phases 
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include  quantities  such  as  composition  which  will  require  a  smaller  number of iterations (1 or  2.) The 
non-linear  quantities  are  still  retrieved  in  these  later  phases;  however,  as  convergence  was  achieved 
earlier,  only  small  revisions  will be made.  By  using  this  scheme,  the  number  of  iterations  required for 
the  full  system  is  minimized. 

Talung  this one stage  further, it is also  possible  in  the  earlier  phases  of  the  retrieval  process to 
constrain  quantities  without  propagating  errors  for  them,  or  assuming  that  the  modified Si matrices  are 
diagonal. As these  early  stages  are  only  used to find  a  suitable  starting  point  for  the  final  'full'  retrieval, 
there is  no need  for  a  comprehensive  treatment  of  the  error  budget. 

It  is even  possible  to  conceive  of  more  complex  systems  whereby  the  temperature is retrieved  at 
full  resolution  in  an  early  phase,  and  the  results  output  as  the  standard  temperature  product.  In  the  later 
phases,  where  composition  is  the  main  goal,  and  temperature  is  less  important  (and  has  little  impact on 
the  radiances),  the  vertical  resolution  and/or  range  of  the  temperature  profile  could  be  decreased  in  the 
state  vector,  in  order  to  reduce  the  computation  effort. 

4.4.3 An 'Information' perspective on retrieval issues 

The previous  sections  touched on the  mechanisms  whereby  the  retrieval  algorithm  can be made  more  ef- 
ficient,  namely,  reducing  the  size  of n or m i .  Clearly,  some  metric  is  needed  to  indicate  which  reduction 
schemes  are  preferable.  One  such  metric is the information  content of  the  retrieval  system. 

The information  content  of a system  is  a  measure  of  the  size  (in  fact  'inverse  size')  of  the  region 
in  state  space  within  which one is confident  that  the  system is located. This region  is  described  by  the 
covariance  matrix,  which  describes  a  hyperellipsoidal  region  in  state  space.  The  volume  of  this  region 
is given  by  the  product  of  the  lengths  of  all  the  axes  of  the  ellipsoid  (give or take  factors of rr). These 
lengths  are  given by the  square  roots  of  the  eigenvalues  of  the  covariance  matrix  (recall  that  a  covariance 
matrix is an  inherently  'squared'  quantity.) Thus the  volume  of  state space is given  by  the  square  root  of 
the  product of  the  eigenvalues  of  the  covariance  matrix.  Recall  that  the  determinant  of  a  matrix ( I  . . . I )  
is equal  to  this  product. 

The information  content ( H )  of  a  system  is  thus  defined  by  the  logarithm of the  reciprocal  of  this 
volume,  i.e. 

(4. 18) 

(Recall  that IMI" = 1M-l I . )  Base 2 is  typically  used  for  the  logarithm, so that  the  information  content 
can  be  described  in  terms  of  the  number  of  'bits'  of  information  available. 

In  studies  of  retrieval  systems it is useful  to  consider  the  information  content  added  by  the  retrieval 
operation.  Combining  Equation 4.1 8 with  Equation 3.14 describing  the  covariance  of  the  retrieved 
product  gives  the  following  expression for the  information  added  by  a  retrieval  calculation  (recall  that 
JAB1 = IAIIBI): 

AH = [Final  information  content] - [a priori information  content] (4.19) 

(4.20) 

(4.21) 

In  practice,  the  determinant  operation  is  highly  numerically  unstable, so it is best  to  apply  a  sequen- 
tial  approach  to  the  calculation  of  the  information  content,  adding  measurements one at  a  time.  The 
derivation  of  this  calculation  is  somewhat  complex;  see  Appendix  (2.2  for  more  details. 

Retrieval  Processes  Algorithm  Theoretical  Basis 
chaptcr4.tex V I  10 
October 7, I999 33 



. 

ChaDter 4. The EOS MLS Level 2 data vrocessinn  alnorithms 

301 

t 
0 2 4 6 8 10 12 

No. surfaces  per  pressure  decade 

Figure 4.2: This  plot  shows  the  trade-off  between  resolution  and  information  content  for a system 
measuring 0 3  from the R 2  : 1 9  0 . B6F : 0 3  radiance  observations  (temperature  and  pressure are 
taken  to  be  perfectly  known.)  The 0 3  profile  spans 1000 to 0.01 mb. 

4.4.4 Vertical resolution 

Given  that  the  rate  determining  step  in  the  retrieval  calculation  is  order n'm, cutting  down  the size of 
the state  vector  will  give a significant  increase  in  speed. The main  way  in  which to decrease  this size is 
to  decrease  the  vertical  resolution  of  the  geophysical  profiles  in  the  state  vector.  However, too coarse a 
resolution  will  give a deterioration  in  information  content.  Figure  4.2  shows the trade-off  between the 
vertical  resolution  and  information  gained  for  the  ozone  observations  from  band R2 : 1 9 0 .  B6F : 0 3 .  

The figure  shows  that  little  information  is  lost  by  going  from  twelve to six  surfaces  per  decade  for 
the 0 3  profile.  Given  that  this  is  a  factor  of  two  decrease  in  the  state  vector  length, a quadrupling of 
speed  could  be  seen  if  this  were  implemented.  If  similar  savings  can  be  made  in all the  other  species, 
significant  speed  increases  could be obtained.  In  addition,  the  vertical  range  of  the  profiles  could  be 
limited, or the  resolution  further  degraded  in  certain  regions of the  profile  (for  example  where  the  signal 
to noise  ratio is poor.) 

4.4.5 Radiance averaging / limiting 

In  addition to decreasing  the  resolution  and / or range  of  the  state  vector  components,  the  number of 
radiances  used  in  the  retrieval  calculations  can  be  reduced  by  either  limiting  the  vertical  range  of the 
radiances  used, or combining  radiances  from  adjacent  minor  frames.  Again,  the  information  content 
of  the  retrieval  system  is  the  metric  whereby  decisions  would  be  made  regarding  the  most  appropriate 
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strategy.  The  form of the  averaging  or  limiting  would  clearly  vary  from  channel  to  channel, as the 
tangent  point  altitude  range  over  which  useful  signals  are  obtained  varies  from  channel  to  channel  (see, 
for  example,  Figure 3.2.) 

As a  test  case,  a simple ‘random  walk’  type  algorithm  has  been  implemented  to  determine  the 
most  advantageous  scheme  for  a  given  reduction  in  the  number  of  radiances  used.  Figure 4.3 shows 
the  application  of  this  algorithm to the R2 : 1 9  0 . B6F : 03 0 3  observations  for  the  case  where  a 30% 
reduction  in  the  effective  number  of  radiances  is  required. 

This  example  shows  that  rather  than  merging  radiances from adjacent  minor  frames,  the  best  way to 
reduce  the  number  of  radiances  used  in  the  retrieval  calculation is to use  the  radiances  at  the  full  vertical 
resolution  available,  but  over  a  limited  vertical  range  which  varies  from  channel  to  channel. 

There  are  other  points  of  interest  to  note  from  this  example.  For  example,  while  the  channel  closest 
to  the  line  center  would be thought  to  give  the  most  information  about  the  upper  regions  of  the  atmo- 
sphere,  the  calculation  has  chosen  to  concentrate  on  the  information  from  the  two  pairs  of  channels 
further away  from  the  line  center. This is  due  to  the  fact  that  the  line  center  channel  has  a  smaller  band 
width  and  therefore  a  poorer  signal  to  noise  ratio  than  the  channels  further  out.  Figure 4.4 shows  the 
optimum  information  content  achieved  by  this  search as a  function  of  the  fraction  of  the  number  of 
radiances  used  in  the  retrieval  calculation. 

In  addition  to  averaging  together  radiances  from  multiple  minor  frames, it is  also  possible  to  average 
together  radiances  from  different  channels.  While  this is not  discussed  in  detail  here,  a  similar  approach 
to  the  one  outlined  above  can be used  to  arrive  at  optimum  averaging  schemes.  This  technique  will 
be particularly  useful  when  using  radiance  observations  from  the  digital  autocorrelator  spectrometers 
(DACs).  These  spectrometers  provide “2 MHz  resolution  over - 10  MHz,  for  each  minor  frame. The 
amount  of information  supplied  by  these  measurements is very  small  compared  to  the  data  volume. 
Techniques  such  as  these  allow  the  autocorrelator  data to be effectively  used. 

Note  that  reducing  the  size of the  state  vector  can  also  increase  the  efficiency  of  the  forward  model 
calculation.  However,  reducing  the  number  of  radiances  used  does  not  necessarily  speed  up  the  forward 
model,  as  the  field  of  view  convolution  calculation in the  forward  model  requires  radiances  at  relatively 
high  resolution  over  a  large  vertical  range,  independent  of  how  many  radiances  are  actually  required for 
the  retrieval  calculation. 

4.4.6 Implementation of these schemes in the production processing 

Decisions  made on the  resolution  of  the  state  vector,  and  the  reduction  in  size  of  the  measurement 
vectors,  will  typically be made  with  reference  to  more  specifically  targeted  quantities  than  those  de- 
scribed  here. For example, one might  choose  to  maximize  the  information  obtained  in  the  lower  strato- 
spherehpper troposphere  region,  at  the  expense of less  precision  in  the  mesosphere  and  upper  strato- 
sphere. 

Additionally,  note  that  these  simple  studies  considered  the  retrieval  of  one  molecule  from  a  single 
band.  Decisions  made  about  the  configuration  of  the  production  retrieval  algorithms  will  be  made  with 
reference  to  studies  of  the  complete  measurement  system. 

4.5 Numerical  stability  considerations 

The issue of  numerical  stability is very  important  in  these  calculations.  The  contents  of  the  state  vector 
represents  a  huge  dynamic  range,  consider  the  contrast  between  the  dynamic  ranges  of  temperature 
(“40 K) and C10 mixing  ratio (- 1 x Care  must be taken  to  avoid  numerical  round  off  errors 
when  combining  such  quantities. 
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4.5. Numerical  stabilitv  considerations 
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Figure 4.4: This  figure  shows the trade-off  between the number  of  radiances used in the 
R2 : 1 9 0  . B6F : 0 3  ozone retrieval (at six surfaces  per  decade) and the  optimum  information  con- 
tent that can be obtained  from the retrieval  system  using the given number of radiances. 

This problem  can be avoided  by scaling  the  system,  to  normalize  all  the  quantities  involved.  This 
normalization  process  yields  'scaled'  vectors  according to 

I 
u x = s,2x (4.22) 

y; = s-zyi,  (4.23) 
1 

N 

where  the  superscript -: indicates  the  inverse  square  root  operation  for  the  matrix  (i.e.  the  inverse  of 
its  Cholesky  Decomposition, see Golub  and  VanLoan  1996;  Rodgers  1996). The K; matrices  are  scaled 
according  to 

(4.24) 

The  retrieval  equations  become  simpler  in  this  scaled  space  because  the  covariance  matrices Sa, and S; 
are  all  identity  matrices. 

As has  been  stated  previously,  the  measurement  covariance  matrices S; will  typically  be  diagonal. 
The a priori covariance  matrix Sa however,  presents  more  of  a  challenge. As described  in  Section  4.2.3, 
the  matrix  is  a  Kronecker  product, so computing  its  inverse  (or  in  this case its  Cholesky  decomposition) 
is  trivial.  However,  applying  the  scaling  of K; from  Equation  4.24  gives  a E; with  less  sparsity  than 
the  original  matrix,  due to the  inter-profile  correlation  imposed  by  the a priori covariance.  This  would 
significantly  increase  the  required  computation  time. 

N N 
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A  more  efficient  approach is to  use  a  simpler  matrix  than Sa as  the  basis  for  the  state  vector  scaling. 
Consider 

I - u x = s,zx, (4.25) 

where 

s, = I N  8 sv, (4.26) 

where Sv is as  defined  in  Section 4.2.3, and IN is the N x N identity  matrix. This is essentially  the 
same  as Sa with  all  the  off-diagonal  blocks  set  to  zero,  and  thus  describes  a  system  with no horizontal 
correlations. 

The  advantage  of  using  such  a  matrix  is  that it performs  the  normalization  required for stability 
while  both  still  being  trivial  to  decompose,  and  maintaining  the  sparsity  in k;. Applying  this  scaling 
gives Sa = H 8 I,. All  the  major  equations  derived  up  to  this  point  are  presented  in  their  scaled  form  in 
Table 4.2. 

w 

4.6  Testing  for  suitable  convergence 

The  proposed  algorithm  is  an  iterative  non-linear  minimization  of  a  cost  function ( x 2 )  in  which  each 
iteration  itself  involves  the  use  of  an  iterative  method  for  solving  the  matrix  system.  Clearly,  both  of 
these  sets  of  iterations  require  a  convergence  test  of  some  form. 

As  in  most  cases,  these  tests  will  be  implemented  by  examining  the  size  of  the  change  in  the  state 
vector x each  iteration. If the  state  vector  has  not  changed  significantly,  according to some  user  defined 
threshold,  then  the  iterations  are  deemed  to  have  converged. 

As discussed  in  the  previous  section,  the MLS state  vector  contains  many  diverse  quantities  repre- 
senting  very  different  orders  of  magnitude.  For  this  reason, it is  preferable  to  perform  the  convergence 
test  on  the  scaled  state  vector X, rather  than  directly  on  the  state  vector x. This will  weight  the  changes 
in  each  state  vector  element  according  to  the a priori knowledge of their  variability. 

The  convergence  criteria  will  typically  be  a  threshold  for  some  norm  of  the  change  in Z, for  example 
the L2 norm ( is .  I AZl), or  the L ,  norm  (the  maximum  value). 

4.7 Summary of proposed  algorithm 

For completeness  the  algorithm  described  above is summarized  here. For simplicity  only  the  case 
of  Newtonian  iteration is shown,  as  the  Marquardt  Levenberg  method’s  requirements  for  additional 
decisions  and  a  memory  of  previous  states  complicates  the  system.  It  is  intended  that  the  Marquardt- 
Levenberg  method  will be available in the  MLS  Level 2 data  processing  algorithms. 

The paragraphs  below  summarize  the  actions  taken  during  such  an  iterative  retrieval,  given  an  initial 
value  for  the  state  vector x, a  set  of  measurement  vectors yi with  associated  covariance  matrices Si, 
and  an a priori state  vector a with  its  covariance  matrix  given in  terms  of S, and H as  described  in 
Section 4.2.3. 

1. The  first  stage  of  the  retrieval  process  is  (assuming it has not  already  been  performed)  the  scaling 
of  the  measurement  vectors yi by  the  inverse  of  their  covariance  matrices.  In  other  words 

(4.30) 
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Chapter 4. The EOS MLS  Level 2 data  processing  algorithms 

In  nearly  all  cases S; will  be  a  diagonal  matrix, so no difficulty is expected  with  this  step.  However, 
the algorithm  will  have  the  capability  to  deal  with  non-diagonal Si  matrices  should  the  need  arise 
for  research  purposes.  Typically  this  will  take  the  form  of  a  standard  Cholesky  Decomposition 
algorithm. 

In  addition,  the x and a vectors  will  be  scaled  according to 

- a = [IN €4 S,]-i a, and ? = [IN 8 Sv]-i x (4.31) 

2. Given  the  current  state  vector,  the  forward  model is then  invoked to compute  predicted  radiances 
f; corresponding  to  the  observations y;, and  associated  weighting  function  matrices K,. It is 
possible  that  the  weighting  functions  may  not  be  recomputed,  and  simply  assumed  constant  from 
one iteration  to  the  next,  in  order  to  save  computation  time. 

In  addition, if a  preconditioner  is  being  used,  the  forward  model  may  also  provide  weighting  func- 
tion  matrices  corresponding  to  the  preconditioner  system  (e.g.  weighting  functions  corresponding 
to a  1D  retrieval.) 

3. Next  the  forward  model  radiance  vectors  are  scaled,  similarly  to  the  measurement  vectors y; 
above. 

(4.32) 

Additionally,  the  weighting  function  matrices K; will  be  scaled  (if  they  have  been  changed  since 
the  previous  iteration),  according  to. 

& = S;'K, [IN 8 S,]; (4.33) 

Once  again,  the  fact  that S; is  diagonal  simplifies  this  process,  as  does  the  Kronecker  Product 
construct, if it is  properly  exploited  in  the  calculation. 

Any  preconditioner  system  being  used  will  also  be  scaled  in  a  similar  manner. 

4. At  this  point  the M matrices  and b vectors  are  computed  according  to 

M = H-I @I,, + C K ~ K ~  [ - -1 (4.34) 

b = [H" @ 1.1 [ii - F'"'] + KT [yi -Z(X"')] (4.35) 
1 

I 

If  any Ki matrices  are  unchanged  from  the  previous  iteration  their  contributions  to M need  not 
be recomputed  (note  that  this  implies  a  memory  of  the  results  of  the  various KTK; matrices). 
Additionally,  once  again,  the M matrix  will  also  be  computed  for  any  preconditioner  systems. 

5. The program  will  then  solve Mz = b for z which  is  equal  to  the  innovation  in ?. Typically  this  will 
be  by  the  use  of  a  preconditioned  conjugate  gradient  technique.  In  the  case  of  the  preconditioner, 
the M matrix  will be explicitly  decomposed andor inverted  as  a  preliminary  step,  in  order  to 
provide  the  solutions  to  the  'main'  system  upon  demand. 

" 

6.  The  scaled  state  vector  will be modified  according  to 

? + ? + Z .  (4.36) 
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4.7. Summary of proposed algorithm 

The  result  will  then  be  unscaled  according  to 

x = [IN 8 SV+ x. (4.37) 

If  convergence  test  indicates insufficient convergence,  the  program  will iterate, by  returning  to 
stage 2. 

7. Finally, the unscaled  state  vector is output, and the final  solution  covariance is obtained  as  the 
inverse of M (possibly  computed  directly or by  preconditioned conjugate gradients) or  the  inverse 
of the M matrix  used  in  the  preconditioner. 
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Chapter 5 
Related  algorithms  for EOS MLS 'noisy' products 

5.1 Introduction 

Some  of  the  molecules EOS MLS is  designed  to  observe  have  particularly  small  mixing  ratios,  and  weak 
emission  lines. The corresponding  radiance  observations  will  thus  have  poor  signal  to  noise  ratios, 
leading  to  noisy  retrievals. For these  products,  more  useful  results  can  be  obtained  by  considering 
averaged  products,  such  as  daily  zonal  means, or monthly  maps.  There  are  several  ways  in  which to 
compute  such  quantities. 

5.2 Possible  approaches 

One  approach  is  to  simply  retrieve  the  products  in  the  same  manner  as  all  the  others,  and  then  use 
whatever  averaging  technique  is  appropriate  afterwards. The disadvantage  of  this  method  is  that,  unless 
special care is  taken,  the a priori information  can  significantly  bias  the  results,  as it is  included  in  each 
separate  retrieval. 

A second  approach  is  to  average  the  radiances  from  the  relevant  bands  in  whatever  manner is appro- 
priate,  and  to  then  perform  retrievals  on  the  averaged  radiances.  This  method  has  a  profound  problem 
however  when  the  lines  of  interest  are  contaminated  by  strong  emission  from  other,  highly  variable 
molecules. This is  the  case  for  example  with  the BrO observations  in R 4  : 6 4 0 . B3 1 M  : B r O ,  which  are 
very close  to  a  strong 0 3  line. 

From  a  computational  point of view,  the  first  approach  does  not  represent  any  efficiency  gain. The 
second  method  however  can  result  in  improved  performance,  as  the  radiances  specifically  targeted  to 
the  molecules  in  question  can be ignored  in  the  processing  for  each  day. 

5.3 The  approach  chosen 

The  best  approach  to  this  problem is to  retrieve  the  averaged  products  as  a  separate  task,  after  the  main 
processing  has  occured.  Rather  than  using  averaged  radiances  as  above,  however,  the  full  radiance  data 
set  for  the  relevant  band  is  considered.  Consider  the  iterative  retrieval  expression  given  in  Equation 3.13 

In the  linear  (i.e.  single  iteration,  with  initial  guess x = a) case,  this  reduces  to 

r 1 - 1  

~ ~~ 
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5.3. The approach  chosen 

Now for the case of  the  noisy  products  take x to be a  specific  component  of  an  averaged  dataset  (e.g. 
a  single  profile  corresponding  to one latitude  in  a  daily  zonal  mean  retrieval).  Consider  the  measure- 
ment  vectors yi to  represent  each  individual  scan  in the relevant  spectral  band  that  contributes to this 
component  (e.g.  all  the  scans  in  the  latitude  range  under  consideration.) The forward  models  for  each 
scan  use  the  previously  retrieved  values  for  the  other  molecules  and  parameters  that  affect  the  radiance 
measurements ( 0 3 ,  temperature,  tangent  pressure  etc.) as constrained  quantities. 

Note  that  the  measurement  covariance  matrices  used  here  are  not  necessarily  diagonal.  Firstly,  as 
discussed  in  Section 3.5.4, the  radiance  observations  may  contain  correlated  errors due to the  effects  of 
1 / f  noise.  Furthermore,  the  effect  of  possible  errors on the  constrained  quantities  (temperature,  tangent 
pressure  etc.)  need to be  propagated  through  to  the Si matrices  for  these  calculations.  However,  as 
the  measurement  vectors  will  only  represent  individual  major  frames  from  single  bands  (as  opposed  to 
chunks of  several  major  frames  for  multiple  bands),  such  a  calculation is not  prohibitive. 

In  this  case n (the  size  of x) will be sufficiently  small  that  traditional,  non  sparse,  matrix  computation 
methods  will be appropriate.  This  system  will  probably be sufficiently  linear  that only one iteration  is 
required. 
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Chapter 6 
Algorithms  for  cloud  flags  and  products 

One of  the  advantages  of  the MLS instrument,  when  compared  to  infrared,  visible,  and  ultraviolet  instru- 
ments,  is  the  ability  to  make  atmospheric  observations  in  the  presence  of  clouds  such  as  cirrus  and  polar 
stratospheric  clouds (PSCs) and  in  the  presence  of  dense  aerosols  formed  from  volcanic  injections of 
SO;?. Because  the  observing  wavelengths  are  significantly  larger  than  the  typical  size  of  the  cloud  parti- 
cles,  clouds  play  a  less  important  role in  microwave remote  sounding  techniques  than  in  infrared,  visible 
and  ultraviolet  techniques.  However,  thick  dense  clouds  in  the  troposphere  can  affect  the MLS radiances 
and  the  effects  of  cloud  on MLS observations  in  the  upper  troposphere  need  careful  consideration. 

6.1 The effect of clouds  on MLS radiance  observations 

Figure  6.1  shows  a  radiance  profile  observed  by  UARS MLS at 204 GHz,  bounded  by two calculated 
profiles  under  clear-sky  dry  and  supersaturation (1 10% relative  humidity)  conditions.  At  high  tangent 
altitudes  (above 8 km or  -300  hPa),  clear-sky  radiances  are  not  expected  to  exceed  the  values  defined 
by  the  supersaturated  profile.  However,  excessive  radiances  can be induced  by  clouds  through  scattering 
and  emitting  upwelling  radiation.  One  can  use  the  supersaturated  profile  as  a  threshold  to  classify  clear- 
and  cloudy-sky  observations  at  high  tangent  heights. 

At  lower  tangent  heights  (below -8 km or "300 hPa in UARS case),  there  is  a  minimum  defined 
by  both  dry  and  saturated  profiles,  which  shows  that  the  clear-sky  radiances  should  not  be  less  than 
these  values.  However,  clouds  can  reduce  the  limb  radiance  significantly  below  the  clear-sky  limit  by 
scattering  some  of  upwelling  radiation  out of MLS  field-of-view. This occurs  when  large  (greater  than 
-100pm) ice  particles  are  present,  which  can  be  the  case  with  deep  convective  clouds. Thus, one 
can  use  the  minimum  radiances  defined  by  the  dry  and  supersaturated  profiles  to  flag  the  low-altitude 
radiances  that  are  affected  by  clouds. 

Figure 6.2 shows  a  set  of  radiances  observed  by  the  UARS MLS 204GHz channel. The smooth 
lines  in  the  figure  illustrate  the  approximate  upper  and  lower  limits  defined  by  clear-sky  dry  and  satu- 
rated  conditions.  Radiances  outside  this  range  have  been  affected  by  the  presence of clouds.  For  each 
measured  radiance one can  calculate  the  corresponding  clear-sky  limits  from  an  estimated  temperature 
profile  and  use  them  for  cloud  detection  thresholds. 

The UARS MLS 204GHz observations  can be used  to  illustrate  how  such  a  method  will be im- 
plemented  for EOS MLS retrievals.  Figure  6.3  shows  the  radiance  difference  between  observed  and 
maximum  clear-sky  radiances.  Above  -300  hPa,  most  radiances  are  close  to  or  less  than  zero  with  a 
few  exceptions  where  radiances  exceed  the  allowed  values  for  clear  sky.  These  exceptions  indicate  the 
presence  of  clouds  and  can  be  flagged  as  cloudy-sky  measurements.  Given  that  the MLS forward  model 
may  have  a ( T ~  =-3 K uncertainty,  the  flagging  criteria  for  high-tangent-height  radiances  will be set  as 

where Pl10 is  the  modeled  radiance  for 110% saturation  and P is  the  observed  radiance. p' is  the  tangent 
pressure,  while $1 is the  cutoff  pressure  level  for  defining  the  high-tangent-height  radiances,  which  is 
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6.1. The  eflect of clouds on MLS radiance  observations 

0 50 100 150 200 250 
UARS MLS 204 GHz radiance / K 

Figure 6.1: UARS MLS 204 GHz radiance  measurement  (solid  line)  and  model  calculations  (dotted 
lines) for dry  and  for  supersaturated  moist air. The  dry-air  continuum  is  the  major  contributor  to  the 
dry  profile,  with  small (3-5 K) contributions  from  minor  constituents.  The  supersaturated  profile 
is  calculated  assuming 110% relative  humidity. The radiative  transfer  model  was  developed  for 
UARS MLS upper-tropospheric  humidity  measurement  (see  Read  et  al. 1999), which  uses  dry-air 
and  water  vapor  continuum  coefficients  determined  empirically  from  the MLS data. 
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Chapter 6. Algorithms for  cloudjags and  products 

10 

100 

I ooc 
0 1 00 200 

UARS  MLS  204 GHz Radiances / K 

~ 300 

Figure 6.2: This  plot  shows  observations of 204 GHz radiance  from UARS MLS on 10 January 
1992. The  smooth  lines  approximately  describe  the  theoretical  radiance  limits  determined by the 
wet  and  dry  continua  in  a  cloud  free  atmosphere. 
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6. I .  The effect of clouds  on MLS radiance  observations 

-150 -100 -50 0 50 100 150 
p-pI 10 

Figure 6.3: Radiance  differences  between  UARS MLS observations (10 January 1992) and  the 
maximum  value  allowed by the  model  for  clear  sky.  Above -300 hPa  most  differences  are  close  to 
or less  than 0 K except  for  those  affected by clouds  that  show  large  positive  values.  The  radiance 
maximum  below -8 km or -300 hPa  cannot  be  simply  determined  by P110 because of complicated 
behaviors of the  dry  and  wet  profiles  (see  for  example  Figure 6.1). 
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Chapter 6. Algorithms for cloud$ags  and  products 
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Figure 6.4: Radiance  differences  between 204GHz UARS MLS 10 January 1992 measurements 
and  the  minimum  values  defined  by  the  dry  and  saturated  profiles. Most measurements  are  greater 
than  the  minimum  values  while a few  are  smaller.  The  negative  differences,  especially  those  less 
than -10 K, are  likely  to  have  been  influenced  by  clouds.  On  the  other  hand,  systematic  error is also 
present  showing a  significant  number of measurements in the OK and 10K range  above 316 hPa. 
This  is  probably  caused  by  inaccurate  pointing  knowledge  and  constituent  profiles  (particularly, 0 3  
and N20). 

3 16 hPa  in  the UARS case. The actual  cutoff  pressure  and  the  forward  model  uncertainty (3  K in  this 
case) will  be  the  input  parameters  in  the  production  software  and  will  likely be frequency  dependent. 

Figure 6.4 illustrates  the  cloud  flagging  method for low  altitude  radiances. In this case, we  check 
whether  the  measurement is below  the  low  radiance  threshold,  mathematically 

where Po is  the  modeled  radiance  for  dry air and j& is  the  cutoff  pressure  level for this  low-tangent- 
height  criteria ( 3  16 hPa  for UARS MLS).  An  uncertainty  of a 2  = 10 K is used for model  and  temperature 
error associated  with UARS MLS 204 GHz, which is estimated  from  scatter  in the plots.  For EOS MLS 
this  uncertainty  will  be  provided  by  the  forward  model  and  will  be  frequency-dependent. 
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6.2. Flagging  radiances  contaminated by cloud 

6.2 Flagging  radiances  contaminated  by  cloud 

The  MLS  data  processing  algorithms  will  generate  a  number  indicating  the  level  of  cloud  contamination, 
called  the cloud induced radiance (CIR). The CIR  will  simply  be  the  deviation of the  observed  radiances 
from  the  clear-sky  envelopes  described  above,  with  negative  values  indicating  radiances  below  the  lower 
limit  of  the  envelope,  and  positive  values  indicating  radiances  larger  than  the  upper  limit. 

The retrieval  algorithm  will  generate  CIRs  for  each  radiometer  and  minor  frame.  These  will  then  be 
compared  with  selected  upper  and  lower  thresholds  (which  can  be  a  function of radiometer  and  tangent 
pressure).  If  a CIR exceeds  the  appropriate  threshold  then  the  corresponding  radiances  will  be  flagged 
and  may  not  be  used  in  the  retrieval  calculations. 

The CIRs  will  be  modified  as  the  retrieval  progresses,  by  comparing  with  the  successively  tighter 
envelopes  obtained as the  knowledge  of  the  temperature  profile  and  upper  tropospheric  humidity  im- 
proves.  The  final  CIR,  essentially  cloud  signals,  will  be  used  for  retrieving  cloud  parameters  such  as 
extinction  coefficients  and  ice  water  content  (IWC).  In  addition,  the  normal  clear-sky  retrieval  will  pro- 
duce  a  cloud  extinction  coefficient  (see  Section  3.5.3). Since such  extinction  coefficient  will  account  for 
all  spectrally-flat  radiances  unexplained by the  clear-sky  model,  it  can  be  used  to  compare  with  CIRs 
determined  with  this  procedure. 

6.3 Uncertainties of cloud  flags 

The  classification  scheme  described  above  depends  crucially  upon  the  accuracy  of  the  MLS  clear-sky 
forward  model.  Major  uncertainty  will  arise  from  uncertainties  in  dry  and  wet  continua.  It’s  important  to 
know  these  quantities  to  about 5% accuracy  in  order for the  flagging  method  to  work  properly.  In  UARS 
MLS,  the  continua  were  obtained  empirically  from  the  data  (Read et al.  1999),  yielding  a  residual  of 
-5 - 10% at 10- 20 km  tangent  heights. 

Good  temperature  and  pressure  measurements  are  required  for  this  cloud  flagging  scheme.  The  CIR 
will  be  first  calculated  using  temperature  and  tangent  pressure  obtained  from  a  preliminary  retrieval 
based  on  the O2 radiances  above -100 hPa,  and  the  scan  model  described  in  Section  3.4.  Refinements 
of the  CIR  during  the  retrieval  will  be  carried out as  the  retrieval  process  leads  to  improved  estimates of 
these  and  other  atmospheric  species ( 0 3 ,  H20, etc.) 

6.4  Deriving  cloud  parameters  from MLS observations 

The  final  CIRs  will go to  a  separate  algorithm  (in  addition  to  MLS  clear-sky  retrieval)  for  cloud  ice 
retrieval.  The CIR to  extinction  coefficient  and  CIR  to  IWC  relations  will  be  derived  using  a  full  radiative 
transfer  model  that  includes  both  absorption  and  scattering  processes.  This  model is currently  being 
developed,  which  will  incorporate  realistic  parameterization  for  cloud  ice  particle  size  distributions. A 
detailed  description  of  the  model  will  be  given  in  later  versions of this  document. 

6.5 Summary of cloud  flagging  process 

A  summary  of  how  the  cloud  flagging  and  characterization  fit  into  the  overall  retrieval  scheme  is  given 
in Figure 7.1 on  page 52. 
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Chapter 7 
Additional  topics 

This chapter  considers  some  remaining  issues  with  the MLS data  processing  algorithms,  including  top- 
ics  which,  while  not  strictly  speaking  part  of  the  theoretical  basis  for  the  algorithms,  are  worthy  of 
discussion. 

7.1 Tuning of algorithms  and  strategy  for  post-launch  operations 

As discussed  previously,  in  addition  to  the  state  of  the  atmosphere,  several  other  parameters  affect  the 
radiances  observed  by EOS MLS. These parameters  include  spectroscopic  data  such  as  pressure  broad- 
ening  parameters,  temperature  exponents  and  pressure  shift  parameters;  and  instrumental  parameters 
such  as  side  band  ratios,  angular  offsets  between  radiometers  etc. While these  parameters  are  measured 
as part  of  the  pre-launch  calibration, or taken  from  standard  databases, it may  be  that  better  values  for 
them  can  be  obtained  post-launch  using  the  retrieval  algorithms. These parameters  can  be  included  in 
the xo elements  of the  state  vector as shown  in  Equation 4.1. Clearly  the  larger  the  chunks  of  data  used 
in  the  retrieval  algorithm,  the  more  precise  the  estimates  of  the xo quantities. This technique  can be 
particularly  effective  in  cases  where  the  same  molecule  is  measured  by MLS in  multiple  spectral  bands. 
Given  two  sets  of  radiance  measurements,  and  knowledge  that  the  emission  in  each  case  is due to  the 
same  molecule,  significantly  more  accurate  estimates  of  the  parameters  such  as  spectroscopic  terms  may 
be obtained.  Once  ‘optimum’  values  for  these  parameters  are  retrieved, it is  possible  to  routinely  pro- 
duce  ‘definitive’  measurements of the  abundance  of a  molecule,  being  an  optimum  fit to all the relevant 
MLS  radiance  observations. 

However,  applying  this  technique  immediately  post  launch  is  probably  too  ambitious,  particularly  as 
many of these  parameters  have  a  non-linear  effect  on  the  radiance  observations.  The  best  strategy is to 
process  the  data  immediately  post  launch  using  somewhat  cautious  algorithms. As a  separate  process, 
the  retrieval  algorithm  is  run  for  large  datasets  to  obtain  optimal  value  of  the xo quantities  for  use  in 
later,  more  ambitious  versions  of  the  data  processing  software. 

This  section  describes  the  details  of  this  exercise,  both  in  terms  of  the  intended  goals  and  the  methods 
used  to  achieve  them. 

7.1.1 Composition from individual radiometers 

The  retrieval  of  parameters  such  as  spectroscopy  and  sideband  ratios  in  the xo part  of  the  state  vector 
allows  for  the  retrieval  of  ‘definitive’  quantities  such as the  optimal ozone from  all  the  MLS  spectral 
bands.  The  behavior  of  these  quantities  will  however be dependent on the  operational  mode  of  the MLS 
instrument. If part  of  the MLS instrument  is  turned  off,  for  example  the 240GHz radiometer,  these 
definitive  products  will  be  affected  by  the  absence  of  some  observations.  For  example,  the  definitive 
ozone  will  be  reduced  in  quality  due  to  the  absence of R 3  : 2 4 0 . B6 F : 0 3  measurements. 

The  MLS  instrument  is  designed  to  be  operated  in  a  ‘power  saving’  mode if necessary,  by  switching 
off  different  radiometers for time scales of order a month.  Such  operations  would  make  the  use of these 
‘definitive’  products  unwise  for  studies  involving  long  term  timeseries  and  trend  analyses. 
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7.2. Quality  control,  exception  handling  and  related  issues 

For such  analyses, it is  more  important  that  a  temporally-consistent  dataset is used,  rather  than 
the  optimal  one.  For  this  reason it is  intended  that  the  MLS  data  processing  algorithms,  in  addition 
to  producing  the  definitive  products  from  the  combined  observations  in  all  the  radiometers,  will  also 
routinely  produce  separate  products  describing  the  observations  of  atmospheric  composition  from  each 
separate  spectral  band. 

7.1.2 An example retrieval configuration 

Figure 7.1 shows  a  possible  implementation  of  the  data  processing  flow  which  retrieves  both  the  defini- 
tive  and  individual  observations  of  the  atmospheric  observations. The goal  of  the  first  set of operations 
(those  in  the  left  hand  column  and  the  first one in  the  middle  column) is to  obtain  an  optimal  value  of 
temperature  and  upper  tropospheric  and  lower  stratospheric  water  vapor,  along  with  the  cloud  informa- 
tion from the l 18 GHz oxygen  line  and  a  subset  of  the H20 radiance  information. 

Following  this,  simple  1D  retrievals  of  each  constituent  are  performed  separately  to  obtain  a  suitable 
starting  point  for  future  phases.  At  this  point  the  algorithm  splits,  the  operations  in  the  center  column 
are  designed  to  obtain  the  ‘optimal’  products  from  all  the  radiance  information. The second  set  of 
operations,  in  the  far  right  column  retrieve  the  separate  composition  measurements  from  each  spectral 
band. 

7.2 Quality  control,  exception  handling  and  related  issues 

7.2.1  Quality of retrieved data 

In  addition  to  retrieving  an  optimum  state  vector,  the MLS data  processing  algorithms  will  compute an 
estimated  uncertainty  for  each  element  of  the  state  vector. As described  in  Section  4.3.3,  this  uncertainty 
will  usually  be  taken  from  the  diagonal  elements  of  the  inverse  of  the [Sa + xi KTSi’Ki] matrix  used  in 
the  preconditioner  calculation,  although  other  sources of  uncertainty  information  are  possible  including 
the  full  covariance  matrix  for  the  solution  state  vector. 

As described  in  Section 3.2.3, the  uncertainty on the  retrieved  result  should  always  be  compared 
with  the  uncertainty  given  on  the a  priori information.  This  comparison,  along  with  the  uncertainty 
information  itself  will  form  a  major  part  of  quality  control.  In  the  UARS MLS case,  the  uncertainty  is 
set  negative if it is greater  than  half  of  the apriori uncertainty.  This  serves  as  a  useful  flag  to  the  users  of 
the  data,  to  indicate  where  data  should be approached  with  caution. Similar flags  may  be  implemented 
for EOS MLS,  but  these  issues  remain to be decided. 

Another  source  of  quality  control  information  will  be  the x2  information  for  the  radiance  measure- 
ments.  Cases  where  the  retrieval  has  converged  on  an  inappropriate  solution,  or  where  the  radiances  are 
poor  for  some  reason,  will be clearly  indicated by a  high  value  of x 2 .  A  complete  set of x2 statistics 
will be produced  by  the  data  processing  algorithms,  giving  the  values  of x2  for  each  major  frames  worth 
of  radiance  observations  for each band. This x2 information  will  also  form  the  basis  of  a  simple  quality 
flag for each  product,  indicating  the  validity  of  the  data,  as  was  done for UARS MLS. 

7.2.2 Bad or missing radiances 

If a  radiance  observation  is  missing or marked  bad  for  whatever  reason, it is simply  not  included in 
the  retrieval  calculation  (in  the  same  manner  as  those  radiances  marked  as  contaminated  by  cloud  as 
described  in  Section 6.2.) If several  consecutive  radiances  are  missing,  such  as  a  whole  major  frame’s 
radiances  for  a  band,  retrieval  is  still  possible,  as  the a priori information,  along  with  information  from 
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7.3. Suitability of the  algorithm to modern  computer  architectures 

the  adjacent  scans,  will  influence  the  retrieval  for  the  corresponding  profile.  The  retrieved  uncertainties 
however  would  reflect  the  comparative  lack  of  information  for  the  corresponding  profile. 

If several  consecutive  major  frames  worth  of  radiances  were  missing,  the  retrieval  algorithm  will 
take  this  into  account  when  dividing  the  dataset  into  chunks,  using  the  boundaries  of  the  region  of 
missing  data  as  the  edges  of  the  chunks. 

7.2.3 Numerical  exceptions 

The retrieval  calculations  described  here  are  sufficiently  well  posed  and  numerically  stable  (when  scaled 
as  described  in  Section 4.5) that  occurrences  such  as  division  by  zero, or requesting  the  square  root  of  a 
negative  number  should  never  occur.  For  this  reason, no special  handling  is  needed  for  such  events;  any 
attempt  to  perform  such  a  calculation  will  be  indicative  of  a  ‘bug’  in  the  program,  and so should  simply 
bring  the  processing to an  immediate  halt  with  an  appropriate  error  message. 

7.3 Suitability of the  algorithm to modern  computer  architectures 

The size  of  the EOS MLS  data  processing  task is such  that  a  parallel  computer  system  will be required 
for  the  retrieval  calculations.  Retrieval  calculations  have  in  the  past  been  described  as  ‘embarrassingly 
parallel’  problems.  There  are  many  different  ways one can  choose to break  up  the  problem  into  inde- 
pendent  tasks; one could  divide  the  task  up  by  profile,  surface,  spectral  band,  channel  etc. 

The proposed  algorithm  retrieves  the  data  in  chunks  of  interrelated  profiles, so the  task  is  not  quite 
so easy  to  divide  up;  however,  the  task  is  still  relatively  simple.  Section 4.4.1 showed  that  the  dominant 
calculations  of  the  algorithm  scale  as N where N is  the  size of  the  chunk. The limiting  factor on the 
value  of N is  clearly  thus  going  to be the  memory  capacity of the  computer  system(s)  used. The value  of 
N should  be  chosen  such  that  all  the K and KTS;’K matrices  fit in  memory. The  use  of  memory  paging 
(swapping  memory out to  disk)  should  be  avoided  as  this  would  dramatically  slow  down  the  speed  of 
the  computations. 

The  use  of  chunks  can  also  lead  to  efficiency  within  the  forward  model  calculations.  Given  a  set 
of N scans  for  which  to compute forward  model  radiances, one can  gain  efficiency  by  doing  all  the 
calculations  for one spectral  band  together.  In  this  manner one could  for  example  load  all  the  relevant 
spectroscopic  information  for  band 1 ,  compute  all N forward  models  for  this  band,  then go onto  band 2. 
The  alternative  course,  whereby  all  the  forward  models  for one scan  are  calculated  together is less 
efficient  as  the  computer  is  constantly  switching  spectroscopy  databases. 

Perhaps  the  simplest  parallel  machine is a  network  of  workstation  type  computers; if these  were  the 
machines  available,  then one manner  in  which  to  perform  the  retrieval  calculation  would  be  to  assign 
each  chunk  of  the  dataset  to  a  different  processor.  Clearly  each  computer  would  need  a  large  amount 
of  memory  in  order  that  an  appropriately  large  value of N can be obtained.  An  alternative  to  this 
approach  is  to  divide  the  chunks  into  smaller  groupings of, say,  five  profiles,  and  distribute  these  among 
the  available  processors. The processors  would  then  collaborate  by  performing  all  the  calculations 
relevant  to  their  elements  of  the  chunk,  using  message  passing  to  communicate  to  their  ‘neighabours’ 
any  components  of  the  matrices  they  require  for  their  calculations. 

Other  parallel  machines  work on either  the symmetric  multi  processing (SMP) or the massively 
parallel  processing (MPP)  models.  The  distinction  between  these  is  becoming  somewhat  blurred; for 
example,  the  current  MLS  Science  Computing  Facility (SCF) compute server is a  Silicon  Graphics 
Origin 2000 machine,  this  has  an MPP like  architecture,  but  appears  to  the  programmer  to be an SMP 
type  machine. These types  of  parallel  machines  are  the  prefered  architecture  for  the EOS MLS  retrieval 
algorithms.  On  these  machines  the  different  processors  can  work  together  much  more  coherently  than 
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in  the  networked  workstations  model,  due  to  the  fast  communications  that  are  possible  between  them. 
In  this  model  the EOS MLS  retrieval  algorithm  would  run  sequentially  through  the  chunks,  running 

the  forward  models  for  the  whole  chunk one band  at  a  time  as  described  above. The forward  model 
calculations  could be parallelized  by  channel,  profile  etc. in a  manner  to  be  determined. The matrix 
computations  involved in the  retrieval  calculations  are  fairly  easy  to  parallelize,  many  standard  methods 
for  this  exist,  (see  Golub  and  VanLoan  1996,  for  example.) 

7.4 Computational  requirements 

Section  4.4.1  outlined  the  number  of  floating  point  operations  involved  in  the  various  parts  of  the  re- 
trieval  calculation. As explained  in  that  section,  the  number  of  floating  point  operations  can  only  serve 
as  a  rule of  thumb  for  the  expected  amount  of  computation  time  required.  Table  4.1  showed  that  the  most 
intensive  calculation  in  the  algorithm is the  computation of  the KTS"K matrix,  which  takes Np2n2rn 
operations. As explained  previous,  this is an  approximate  figure, as it does  not  take  into  account  sparsity 
within  the sub matrices, or the  lack  of  sensitivity  of  say  the R 1 :  11 8 observations to quantities  such  as 
0 3  and  C10. 

Clearly,  the  more  complex  the  retrieval  system,  the  larger  the  size  of  the  computational  task.  The 
most  complex  retrieval  system  in  the MLS case  will  be  the  retrieval  of  all  the  'definitive'  products 
from  all  the  GHz  radiance  observations  (the THz observations  are  likely  to  be  considered  separately  in 
the  routine  processing.) We will  consider  a  retrieval  of  such  a  system  for  the  case  where  the  data  are 
retrieved  in  chunks  of 70 profiles  each (60 profiles  is 1/4 of  an  orbit, 5 profile  overlaps  at  each end gives 
N = 70.)  Only  the  standard  25-channel  filter  bank  measurements  are  used.  The  complete  list  of  all the 
species  considered  and  bands  used  is  shown  in  Table  7.1. 

If  all  the  radiances  are  used,  then  the Ki matrices  occupy  14.5  Gigabytes  (Gb). If  only  20%  of 
the  radiances  are  used  (as  described  in  Section  4.4.5)  this  size  reduces  to  2.9  Gb.  In  either  case  the xi KTSF'K matrix  occupies  0.8  Gb.  The  computation  of  this  matrix  takes 2 . 3 6 ~  lo'* operations if 
all  the  radiances  are  used,  and 4 . 7 3 ~  10" if  only  20%  of  the  radiances  are  used. These correspond  to 
execution  times  of  39.4  and 7.8 minutes  respectively  when  running  at  perfect  efficiency on a 1 Gflop 
(1 x lo9 floating  point  operations  per  second)  computer. This is  comparable  to  the "25 minutes it takes 
MLS  to  measure  the 60 profiles  in  the  main  part  of  the chunk. Given  the  additional  computation  time 
required  to  perform  the  forward  model  calculations  and  the  earlier  phases  of  the  retrieval, it is  clear 
that  processing  the  data  at  a  rate  comparable to real  time is perfectly  feasible  given  the  current  levels 
of  computing  power  (note  that  the  current  MLS  Science  Computing  Facility  compute  server  has  been 
bench-marked  at  over  4  Gflops.) 

7.4.1 Re-blocking of matrices 

In  large  dense  matrix  calculations  typically  the  best  efficiency  is  achieved  by  dividing  the  matrices 
involved  into  blocks  and  dealing  with  the  calculation one block  at  at  time.  This  is  the  method  adopted 
by  libraries  such  as LAPACK and BLAS. This  method is clearly  similar  to  the one proposed  here,  except 
that  in  our  case  many of the  blocks  are  zero.  In  the case of  the  dense  matrix  calculations  the  size  of  the 
blocks  is  chosen  to  best  suit  the  computer  used  (by  comparison  to  the  size  of  the  cache,  and  length  of 
the  floating  point  pipelines  etc.).  The  size  of  the  blocks  in  the  MLS  calculation  is  determined  by  the 
measurement  system. 

It  is  possible  that  the  efficiency of the  calculations  could be  improved  by  re-dividing  the  matrices 
involved  into  larger  blocks. While this  would  involve  storing  and  considering  more  zeros,  efficiency 
could  still be gained  if  the  size  of  the  new  submatrices  was  conducive  to  greater  efficiency.  Such  a 
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re-blocking  exercise  could be performed  if  necessary  after  the  forward  model  calculation  has  assembled 
the K matrices. 

7.5 Data  volumes 

The  volume  of  geophysical  data  produced  by  the  MLS  retrieval  algorithms  is  small  compared to the 
amount  of  radiance  data. The EOS  MLS  overview  document  (Waters  1999)  describes  the  volumes  of 
data  required  in  tables  8.8  and  8.9,  with a total  data  volume  of  about 55 Mb per  day  of  data. 

In  addition to geophysical  parameters  with  their  error  estimates,  the  retrieval  algorithm  will also 
need  to  routinely  output  state  vector  elements  such  as  etc.,  and  statistics  such  as x 2  values,  this  will 
add  about lOMb to  the  data  volume.  The  algorithm  will  also be capable of outputting  quantities  such 
as  full  matrices,  and  forward  model  radiance  estimates,  though  the  former  of  these  will  probably  not be 
produced  in  the  routine  data  processing, due to  the  large  data  volume  involved. 

7.6 Validation of Level 2 data  products  and  algorithms 

The approach  to  the  validation  of  the EOS MLS  data  follows  the  procedure  used  successfully  for  UARS 
MLS,  and  is  summarized  in  the  overview  document  (Waters  1999).  Some  validation of the  Level 2 
algorithm  itself  will  also  be  required. A vital  tool  for  this  validation  is  the  use  of  simulated  instrument 
data  sets  (SIDS).  Given a model  of  the  state  of  the  atmosphere, it is  possible,  using  the  forward  model 
calculation  to  generate a set of simulated  radiances  describing  the  observations  MLS  would  make  were 
the  atmosphere  in  the  modeled  state.  Retrieval  calculations  using  these  radiances  both  in  the  presence 
and  absence  of  instrumental  noise  and  systematic  errors  yield  valuable  insight  into  the  performance of 
the  retrieval  algorithm. 

In  addition  to  such  tests,  the  individual  components  of  the  retrieval  algorithm  will  need  to be vali- 
dated.  In  most  cases  this  validation  method  is  clear; for example,  the  preconditioned  conjugate  gradient 
solver  algorithm  can  be  tested  on a known  system,  or  by  comparison  with  a  complete  Cholesky  Decom- 
position  based  matrix  solving  algorithm. 

7.7 Alternative  methods  considered 

The  retrieval  algorithm  proposed  here is by no means  the  only  reasonable  algorithm  that  could  be  im- 
plemented  for  the EOS MLS  retrieval  problem.  This  section  outlines  some of the  alternative  methods 
considered.  All  the  methods  considered  use  optimal  estimation,  given  the  obvious  superiority of the 
optimal  methods  for  these  problems  (for  more  discussion of this see Rodgers  1976.) 

7.7.1 A moving state vector 

An  alternative  to  retrieving  data  in  chunks  is  to  construct  a  state  vector  consisting of a set of -5 profiles, 
then  using  a  sequential  method  to  assimilate  the  radiance  observations,  either  one  radiance  or one scan 
at  a  time,  moving  the  state  vector  through  the  dataset one profile  at a time.  The  disadvantage  of  such a 
scheme  is  that  forward  and  backward  passes  would  probably  be  required  for  accurate  results.  The  results 
from  these  would  have  to  be  merged  by  their  full  covariance  matrices,  a  time  consuming  and  memory 
intensive  calculation.  In  order  to  reduce  the  memory  requirements, it would  be  necessary to break  the 
day into chunks  as  in  the  proposed  algorithm. 
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Appendix A 
Algorithms  for  other MLS products 

A.1 Tropopause  pressure 

One  of  the  diagnostic  quantities  produced  by  the  MLS  Level 2 processing  will be the  pressure  at  the 
tropopause. This quantity  will be very  useful  in  many  dynamical  studies  undertaken  using  MLS  data, 
particularly  those  involving stratosphere/troposphere exchange.  This  quantity  will  typically  be  derived 
by  fitting  a  function  such  as  a  cubic  spline  to  the  retrieved  MLS  temperature  profile  in  the  region  around 
the  tropopause,  and  inferring  the  pressure  of  the  coldest  region.  It  is  also  intended  that  the  algorithms 
will  produce  a  tropopause  pressure  estimate  as  determined  from  the  correlative  data  sources  such  as 
National  Center  for  Environmental  Prediction (NCEP), or the  GSFC  Data  Assimilation  Office  (DAO). 

A  similar  quantity  that  may  be  produced  is  the  pressure  at  the hydropause. This is the  pressure 
at  which  the  water  vapor  profile  has  its  minimum. This will  be  obtained  in  a  similar  fasion  to  the 
tropopause  pressure, by  fitting  some  appropriate  function to the  profile,  and  obtaining  the  pressure  at 
the  minimum  value. 

A.2 Column  products 

In  addition  to  providing  profiles  of  atmospheric  species,  the  Level 2 processing  will  also  output  strato- 
spheric  column  abundances  of  selected  species  (e.g.  ozone.)  These  are  obtained  by  integrating  the 
abundance  profiles  from  the  tropopause  (as  obtained  above)  to  the  top  of  the  retrieval  range,  and  then 
converting  the  product  into  appropriate  units  (e.g.  Dobson  units). 

The  full  details  of  the  calculations  can be found in the  next  section,  which  is  a  modified  reproduction 
of  an earlier  document  by  W.G.  Read  and J.W. Waters. 

A.3 Column  abundances of MLS profiles. 

This  is  to  document  expressions  for  column  abundances in the  vertical  profiles  retrieved  from  MLS. 

This is  given  by: 
Let N ( z l ,  z 2 )  be the  vertical  column  of  molecules  (per  square  meter)  between  heights z1 and z2. 

where f ( z )  is  the  volume  mixing  ratio  at  height z of  the  species  being  considered,  and n ( z )  is  the total 
('air') number  density  at z .  

We convert  to  pressure p ,  which  is  the  vertical  coordinate  for  MLS  retrievals,  by  using  hydrostatic 
equilibrium: 
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7.7. Alternative  methods  considered 

7.7.2 A ‘sequential’ approach 

Another  approach  considered  uses  the  same  chunk-based  state  vector  as  the  proposed  algorithm.  How- 
ever,  in  this case the  radiances  are  inserted  sequentially.  In  some  respects  this is similar to the moving 
state  vector  method  above;  however, in this case the  measurements  are  assimilated from the  higher  tan- 
gent  points  downwards. This is  similar  to  the  UARS MLS version 4 data  processing,  and  related  to  the 
‘onion  peeling’  technique.  By  inserting  measurements  from  the  top  down,  the two dimensional  aspect 
of  the  problem  is  dealt  with  explicitly, as the  knowledge  of  the  state  of a particular  profile / surface 
is  retrieved  before it is required  in  forward  model  calculations  for  lower  tangent  points  (consideration 
Figure 3.6 should  make  this  clearer.) 

The disadvantage  of  this  technique  is  that  the  forward  model  computations  are  required  in  an  in- 
efficient  order.  Because  the  forward  model  involves  a  convolution  with  an  instrumental  field  of  view, 
the  radiative  transfer  must be computed for a  large  vertical  range  of  tangent  heights,  even  if  only one 
tangent  height  is  required.  In  addition,  this  method  is  more  dependent on the  quality  of  the  retrieved  data 
at  high  altitudes,  as  they  are  used  in  the  retrieval  of  lower  altitude  data,  these  high  altitude  observations 
are  typically  poor, due to  the  low  radiance  values  (and  thus  low  signal  to  noise  ratios)  involved. 
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A.3. Column abundances of MLS profiles. 

where p ( z )  is  the  mass  density  of  air  at z and g ( z )  is the  gravitational  acceleration.  Converting  from 
mass  density p to  number  density n,  and  neglecting  the  small  variation'  in g ,  (A.2)  becomes 

dp(z) = -- n(z) dz, 
A 

where M is  the  'effective'  molecular  weight  of  air  and A = Avogadro's  number (6 .022~  molecules/mole). 
Using n(z) dz  from (A.3)  in (A.l) gives 

where p1 is  the  pressure  at z1 and p2 is the  pressure  at z2, and it is  assumed  that p1 > p2. 

If  the  mixing  ratio f (p) is a  constant  between p1 and p2 then  equation  (A.4)  becomes 

(6.022 x molecules/mole) 
(28.97  g/mole)(9.71 mK2) 

- - f (Apkg m-' s - ~ )  

= 2 . 1 4 ~  f Ap molecules/m2  (for p in  Pascals)  04.7) 
= 2 . 1 4 ~  f Ap molecules/m2  (for p in  hPa),  (A.8) 

where 

AP = p1 - p2, 
def 

g = 9.71 m/s2  (representative  of  45"  latitude  and 30 km altitude)  and  28.97  g/mole  for  the  molecular 
weight  of  air2  have  been  used  in  (A.6).  For f = 1 we  obtain  the  vertical  column of 'air'  and  (A.8) 
shows  that an air  layer of 'thickness' 1 hPa  contains 2 . 1 4 ~  molecules  per  square  meter.3 

The mixing  ratio  profiles  retrieved  from MLS are  given  by 

(A.lO) 

where q (p) are  the  'basis  functions'  used  for  representing  the  profile  and f j  are  retrieved  coefficients. 
Putting  (A.lO)  in  (A.4)  gives 

(A.11) 

(A. 12) 

The basis  functions  currently  used  for  MLS  retrievals  are  triangular  in  log p and  are  sketched  in 
figure  A.  1. 

'The effective  gravitational  acceleration  at  Earth's  surface  varies 0.5% between  9.780 m/s2 at  the  equator  and  9.832 m/s2 
at the  pole,  and is 9.806 m/s2 at 45' latitude.  It  also  decreases 1% for  each  32  km  increase  in  height, for heights  much  less 
than  Earth's  radius. See, for example,  Fleagle  and  Businger  1963  and  Hess  1959. 

2See,  for  example,  Hess 1959. 
3Note that  this  is  independent  of  temperature,  which  determines  the height thickness of the  layer  (through  the gas law). 
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Figure A.1: The MLS basis functions. 

The  mathematical  expressions  for  these  basis  functions  are 

where 

(A. 13) 

(A.14) 

(A. 15) 
(A.16) 

(A.17) 

(A. 18) 

Using (A.13)qA. 1 S), the  integral  in (A.12) can  be  evaluated. It is broken  up  into  that  for  the 
‘bottom’  portion  of  the  basis  function  ranging  between j - 1 and j (indicated  by  superscript ‘-’), 
and  the  ‘top’  portion  ranging  between j and j + 1 (indicated  by  superscript ‘+’). We assume  that  the 
integration  limits p1, p2 occur outside the  region  where 7; (p) is  non-zero. 

First,  for  integration  over  the  the ‘bottom’ portion of ‘7, (p): 

~ 
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A.3. Column abundances of MLS projiles. 

where 

(A. 19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.18) has  been  used  in (A.26), and 

has  been  used  in (A.22), and 

s lnp   dp  = p l n p - p  

has  been  used  in (A.21,A.25,A.27). 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.3 1) 
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Appendix  A.  Algorithms  for  other MLS products 

Now  integration  over  the  the  'top'  portion  of q, (p) is  performed  in  a  similar  fashion: 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

(A.42) 

The  vertical  column N ,  represented by a single retrieval  coefficient f j  is  given by the jth term  in 
(A.12), with  the  integral  evaluated  between j + 1 and j - 1: 

The  EOS  MLS  retrievals  will  use  basis  functions  having 

(A.43) 

(A.44) 

(A.45) 

(A.46) 

for  all j .  This  gives 
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A.3. Column  abundances of  MLS vrofiles. 

A;- = (10"'~ - 1) pj = 0.2115pj 

A;+ - - (1 - p j  = 0.1746pj. 

The column  represented  by  the  lower  portion  of  the  basis  function  is  then 

A = 0.102 - f j  pj 
M g  

(A.48) 

(A.49) 

(A.50) 

(AS 1) 

(A.52) 

= 2 . 1 8 ~  lo2' f j  pjmolecules/m2 (for p; in hPa),  (A.53) 

and  the  column  represented  by  the  upper  portion is 

(A.54) 

(A.55) 

(A.56) 

= 1 . 9 2 ~  f j  pjmolecules/m2 (for p j  in  hPa)  (A.57) 

The column  represented  by  the  complete  basis  function,  (A.45),  becomes 

(A.58) 

(A.59) 

= 4 . 1 2 ~ 1 0 ~ '  f j  pjmolecules/m2 (for pi in  hPa).  (A.60) 

53% of  the  column  represented  by  the  basis  function is in  the  lower  portion  and  47% is in  the  upper 
portion. 

The  total  vertical  column  represented  in  the  currently-retrieved MLS profiles is then 

N = 4 . 1 2 ~  lo2' f j  pjmolecules/m2 (for pj in  hPa). 
.i 

(A.61) 

For ozone it is  convenient to express  the  column  in  Dobson  Units  (1  DU = 2 . 6 8 7 ~  lo2' molecules/m2) 
and  the  mixing  ratio  in  ppmv (1 ppmv = 1 x Equation  (A.61)  then  becomes 

DU = 0.153 f ;  p,j(for p, in  hPa  and f j  in ppmv). 
j 

The column between retrieval  levels i and u is 

(A.62) 

(A.63) 
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Appendix  A.  Algorithms  for  other MLS products 

If f ;  is  a  constant  for  all j ,  it can be shown  that  (A.63)  reduces  to (AS). 
The  column  between adjacent retrieval  levels j and j + 1 is 

(A.65) 

(A.66) 

(A.67) 

where P ; + ~  = p;  has been  used  in  (A.66). 
It  is  interesting to compare  (A.67)  with  the  approximate  expression  which  computes  the  column 

between  two  levels  by  assuming  a  constant  mixing  ratio  equal  to  the  average  of  retrieved  values  at j and 
j + 1.  This  approximate  expression is 

(A.68) 

(A.69) 

(A.70) 

If  the  mixing  ratio is constant  between j and j + 1,  then  (A.70)  and  (A.67)  give  the  same  answer - as 
they  should.  The  error  in  (A.70)  depends  upon  the  the  difference  in f j  and f ;+ l ;  worst-case  error,  when 
either f j  or f ;+ l  is  zero, is approximately  10%. 

Table A.l summarizes  expressions  useful  in  calculating  column  abundances  in  the  profiles  retrieved 
from MLS. 

Table A.l: Some  useful  expressions in calculating  column  abundances  from  retrieved MLS profiles. 
Column  abundance  Molecules/m2  (note 1) Dobson  Units  (note 2) 

in  lower  portion  of q ; ( p )  2 . 1 8 ~ 1 O ~ ' f ;  p , ,  0.071 f ;  p;  

in  upper  portion  of q j  ( p )  1.92 X 1 02' f j p , ,  0.080 f j  p., 

in  all  of q; ( p )  4 . 1 2 ~  lo2' f ;  p;  0.153 f j  p j  

between  levels j and j + 1  (1.92 f ;  + 1.80 f j+ l )  x 1025p.j (0.071 f j  + 0.067 f j+ l )  p.j  
Note 1 :  f ,  in vmr  and p;  in  hPa. 
Note 2: f ,  in  ppmv  and p ;  in  hPa. 
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Appendix B 
Content of the EOS MLS state  vector 

Section 3.5 discussed  the  construction  and  contents  of  the EOS MLS state  vector. This appendix  gives 
full  details of all  the  components  of  the  state  vector  currently  envisaged.  These  details  can be found  in 
Table B.l .  Some  terms  used  in  the  table  are  defined  here. 

Each row of  the  table  describes  a  separate  component  of  the  state  vector. The first two columns 
describe  the  mathematical  symbol  and  the  the  proposed  name  (for  use  in  computer  databases  etc.) for 
each quantity. The meaning  of  the  quantity  is  given  in  the  third  column. The fourth  column  describes 
the type of  the  quantity.  The  following  types  are  used: 

Orbital quantities  will  typically be represented  as  some  function  (e.g.  an  interpolation)  of  a  coordinate 
such  as 4, possibly  with  some  additional  long-term  trend  superimposed. 

Surface quantities  are  simply  atmospheric  quantities  on one particular  pressure  surface. 

The fifth  column  describes  the  units  for  the  quantity,  and  the  last  column  describes  the  expected  usage 
of  the  quantity. 

Retrieved quantities  are  routinely  retrieved  in  the MLS data  processing  (though  not  necessarily  in  all 
phases.) 

Constrained quantities  are,  as  the  name  implies,  constrained  to  an a priori value.  However,  in  most 
cases  errors  will  not be propagated for these  quantites. 

Characterized quantities  are  constrained  (as  above)  in  routine  processing.  However,  these  quantities 
have  sufficient  impact  on  the  direct  measurements  that  their  values  could  be  retrieved  in  ‘off-line’ 
studies  undertaken  to  characterize  the  instrument.  These  ‘optimal’  values  can  then  be  constrained 
in  production  processing. 
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Appendix C 
Details  of  formulae  used  in  this  document. 

C.l Calculus of vectors and matrices 

Many  of  the  manipulations  in  retrieval  theory  involve  differentiating  an  expression  with  respect  to  a  vec- 
tor  quantity. If the  expression is a  scalar,  a  vector  of  derivatives  is  obtained,  each  element  representing 
the  derivative of the  scalar  with  respect  to  the  corresponding  element of the  vector,  as  in 

The  derivative of a  vector  quantity  with  respect  to  another  vector  quantity  can  be  represented  by  a  matrix, 
according  to 

One  can  also  construct  vector  equivalents  for  the  various  rules  commonly  associated  with  scalar 
calculus.  In  the  following  derivations  consider  vectors x and y, with y depending  on x according  to 
D = ay/ax. Many  of  the  retrieval  theory  calculations  involve  evaluating  expressions  such  as 

a 
" A Y  1 ax 

where A is a constant  matrix.  In  order  to  evaluate  these, it is  necessary  to  consider  individual  compo- 
nents of  the  result. 

Another  identity,  involving  the  derivative of a  scalar  quantity  with  respect  to  a  vector,  is  also  common 
in  retrieval  problems.  Again,  the  solution  is  easily  found  by  considering  components: 

A  little  thought is required  before  this  expression  can be recast  into  a  matrix;  several  possible  expressions 
result, one of which is 
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C.2. Details of the  incremental  information  content  calculation 

C.2 Details of the  incremental  information  content  calculation 

Section 4.4.3 introduced  the  concept  of  'information  content'  of  a  system,  being  related to the  de- 
terminant of the  covariance  matrix.  Computing  the  determinant  of  a  matrix  is  an  inherently  unstable 
calculation' ; instead  a  method is derived  here  which  computes  the  information  content  by  considering 
the  incremental  improvements  made  by  introducing  individual  measurements  one  by  one. 

The  incremental  information  content  calculation is described  in  Rodgers  1996;  the  derivation is 
summarized  here  for  clarity,  and  to  set  it  in  the  context of the MLS case. 

Equation 3.14 gave  the  covariance  of  the  retrieved  state  vector as S, = [Sa' + Ci KTSF'Ki1-l. In 
this  case we consider  systems  with  only one measurement  vector;  this  gives  the  covariance  as 

S, = [Si' + KTS,'K]". 

It  can be shown  (through  a  somewhat  complex  series  of  manipulations, see Rodgers  [in  preparation]) 
that  this  is  equivalent  to 

Now  consider  the case where the measurement  covariance  matrix S, is  diagonal,  and  the  measurements 
are  entered  sequentially as scalar  values  with  variances a;. In  this  case,  Equation  C.8  can  become  an 
iterative  expression 

where Sl is  the  covariance  of  the  solution  after  introducing  measurement j with SLo) = Sa, and k; is  the 
weighting  function  for  the j th  measurement,  i.e.  the j th  row  of K. 

The  additional  information  contributed  by  measurement j is from  Equation 4.18 given by 

(C. 10) 

which,  when  applying  the  identities lABl = IAJIBI and 11 + abTl = 1 + bTa, where a and b are cchmn 
vectors,  gives 

This calculation  is  significantly  more  stable  and  also  more  efficient  than  computing  the  full  determinant 
of  the  solution  covariance. 

'The determinant  is  the  product of the  eigenvalues of the  matrix,  consider  the  case of a lOOx 100  matrix  whose  eigen  values 
are - This  would  have  a  determinant of -too  small to be represented  on  most  computer  architectures. 
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Appendix D 
Notation  conventions. 

While  the  use  of a consistant  notation  convention  is  desirable, it should  not  be  achieved  at  the  expense 
of  reduced  clarity. It would be inappropriate,  for  example,  to  use  any  character  other  than g to describe 
the  acceleration due to  gravity.  Hence,  while  there  are  exceptions  to  these  conventions,  in  general  the 
rules  hold  throughout  the  document. 

Scalars: Scalars  are  represented by  italic  characters,  e.g. a,  i, n ,  M .  

Vectors: Vectors  are  shown as bold  lower  case  characters,  such  as x. To  describe  individual  elements  of 
a vector,  the  corresponding  italic  character is subscripted, so [x]; = x ; .  Where  the  bold  character 
is  subscripted  with  an  italic  index,  this  indicates  a  specific  vector  from a set  of  vectors. So yi is 
the i’th measurement  vector. 

Matrices: Bold  upper  case  characters  indicate  matrices  (e.g. A). Again,  subscripts  on  corresponding 
italic  characters  indicate  individual  elements, so [AIi,, = A i j .  Also, as before,  where  the  bold 
character is subscripted,  this  indicates a particular  matrix  in a family  of  matrices (so K; is  the 
i’th  weighting  function  matrix.)  In  the  case  of  covariance  matrices,  bold  subscripts  are  used  to 
indicate  the  covariance of a particular  vector,  thus S, is  the  covariance of x ( S i  is a shorthand  for 
s,, -1 

Subscripts: In  order to improve  clarity,  latin  characters  will  typically be used to subscript  quantities 
in  state  space,  with  Greek  characters  subscripting  measurement  space  quantities,  thus K,; = 
ay,/ax;. 

Iterative  processes: In  iterative  process,  the  value  of a quantity  for a particular  iteration  is  indicated  by 
a parenthetical  superscript,  thus X(‘+’) = x(‘) + . . . .  

Minor  frame  quantities: It  can  often  be  useful  to  distinguish  ‘atmospheric’  quantities  from  ‘instru- 
mental’  ones.  In  most  cases  the  atmospheric  quantities  will be represented  by  profiles  on  fixed 
pressure  surfaces.  Instrumental  quantities  are  typically  dependent  on  the  minor  frame  (i.e.  radi- 
ance  integration  period).  Where  such  distinction is useful,  minor  frame  quantities  are  indicated 
by an arrow  placed  over  the  symbol.  For  example  the  tangent  point  pressure  for  minor  frame i is 
indicated  by f ; .  

Subvectors  and  submatrices: Much  of  this  work  deals  with  subsections  of  matrices  and  vectors.  These 
are  indicated  with  bracketed  subscripts.  Examples  of  these  are X V I ,  the j’th subvector  of x, and 
KLail is  the  matrix ay,aI/ax[il 

Scaled  quantities: The - symbol  is  used to indicate  quantities  that  have  been  scaled  for  numerical 
stability.  Thus j ;  represents  the  scaled  state  vector. 

Linerization  points: Where a linearization  point  has  been  chosen  for  the  system  the * superscript is 
used  to  indicate  the  use  of  linearized  values. So, for  example y = y* + K* [x - x*]. 
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Appendix E 
EOS MLS signal  designation  nomenclature 

E.l Motivation 

The EOS MLS instrument  contains  seven  radiometers  observing  five  different  spectral  regions. The 
signals from these  radiometers  are  subdivided  into  multiple  bands,  each of which is observed  by a 
different  spectrometer.  The  instrument  contains  a  switch  network  which  allows  most  spectral  bands  to 
be observed  by  one  of  two  different  spectrometers (or in  many  cases,  both  simultaneously). This switch 
network is present  to  provide  both  flexibility  for  power  saving  modes  of  instrument  operation,  and  some 
redundancy. 

The complexity  of  this  system  is  such  that  a  complete  nomenclature  scheme is essential  for  a  clear 
understanding  of  the  instrument.  Such  a  system  has  been  devised  with  the  intention  that it will be used 
in  all  the  aspects  of  the  instrument  and  software,  from  hardware  drawings  to  science  data  processing 
software. 

E.2 The  nomenclature  scheme 

The scheme  consists of  up to  five  fields,  in  the  form 

tRadiometer>.<Band>.<Switch>.tSpectrometer>.tChannel> 

Such a  specification  has  many  useful  properties;  in  particular,  fields  can  be  ignored if  they arc  not 
relevant  to  the  specification.  For  example,  in  the  Level 2 software,  the  user  could  specify  that  ozone 
is  to be retrieved  from R2 : 1 9 0  . B 6 F  : 03, without  needing  to  specify  a  switch  and/or  spectrometer,  as 
either  of  the  two  alternatives  will be appropriate. 

Earlier  fields  can  also  be  ignored. For example,  the  instrument  command  and  data  handling  system 
will  typically  only  consider  the  channel  and  spectrometer  fields,  as  the  switch,  band  and  radiometer 
information  arc  of  little  relevance to instrument  data  handling  activities. 

The following  subsections  explain  each  of  the  fields  in  the  specification. 

E.2.1 Radiometers 

The instrument  consists of  seven radiometers,  measuring  five  different  spectral  regions.  These  are  called 
R l A ,   R l B ,  R2,  R3,  R4,  R5H and R5V.  R1A and R1B arc  redundant 118GHz radiometers. R5H and 
R5V are  alternate  polarizations  of  the 2.5 THz signal. As a  courtesy  to  the  reader,  the  radiometer  field 
can  also  contain  an  indication  of  the  frequency,  separated  from  the  number  by  a  colon.  Thus  the  full 
names  for  the  radiometers  arc: R1A:  118, R 1 B :  118,  R2 : 1 9 0 ,   R 3  : 2 4 0 ,   R 4 :   6 4 0 ,   R 5 H :   2 T 5 ,  and 
R 5 V :   2 T 5 .  The frequency  information  can be omitted,  but if present it must  be  correct. 
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Auuendix E. EOS MLS signal  designation  nomenclature 

E.2.2 Bands 

The MLS spectral  bands  are  numbered  sequentially  throughout  the  instrument;  the  numbering  does  not 
restart  at one for  each  new  radiometer. The band  specification  begins  with  the  letter B, followed  by 
the  number  of  the  band.  Following  that,  there is an  optional  character  indicating  whether  the  primary 
signal is in  the  upper (U) or lower (L) sideband of  the  radiometer.  Following  this  optional  character is a 
compulsory  one  indicating  the  type  of  spectrometer  used  for  this  band.  Thus, F indicates  a  standard 25 
channel  filter  bank, M a  ‘mid-band’  11  channel  filter  bank, D a  digital  autocorrelation  spectrometer,  and 
W a  set  of  four  individual  wide  filters. 

Following  this  (separated by a  colon)  there  can be additional  courtesy  information to the  user  de- 
scribing  the  primary  target  of  the  band  (e.g. 0 3  for  ozone, PT for  temperature/pressure.) 

E.2.3  Switch 

Nearly  all  of  the  MLS  spectral  bands  can  be  routed  to  one  or  two  different  spectrometers  through  a 
switch  network.  Most  bands  have  a  direct  route  to  a  spectrometer  through no switch;  this  is  designated 
by SO. Alternatively,  most  bands  can be routed  to  an  alternative  spectrometer  through one of  five 
switches;  such  cases  are  designated S1- . . S5. 

E.2.4  Spectrometer 

Following  the  switch  field,  the  spectrometer  type  and  number  is  indicated. The instrument  contains  four 
types of spectrometers.  There  are  nineteen  ‘standard’ 25 channel  filter  banks,  designated  FB2 5 - 1 . . . 
FB2 5 - 1 9 ;  five  ‘mid-band’ 1 1  channel  filter  banks (MB11- 1 . . + MB11- 5 ) ;  four digital  autocorrelation 
spectrometers (DACS- 1 . . . DACS-4); and  three  sets  of 4 individual  wide  filters (WF4 - 1 . . . WF4 -3.) 

E.2.5 Channels 

Channels  are  simply  specified  by  a C, followed  by a  number.  Channels  are  numbered  from  one,  except 
in  the  DACS  where  the  numbering  starts  from  zero. 

E.2.6 General comments 

This  nomenclature  system  deliberately  contains  much  redundancy  designed  to  improve  clarity;  however, 
it may be trimmed  down  if  the  user  wishes. 

0 Radiometers  may  be  specified  without  their  frequency  information. 

0 Bands  may  be  specified  without  their  intended  target,  or  upper/lower  sideband  information. 

0 The  switch  and  spectrometer  information  are  redundant;  thus one may  be  omitted if desired. 

0 If a  band is specified  the  radiometer  specification  is  redundant  and  may  be  omitted.  This  is 
discouraged, however, as  clarity is lost. 

E.3 The valid MLS signals 

Tables E.l and E.2 list  all  the  various  radiance  signals  that  can  be  measured  by EOS MLS. 
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E.3. The valid MLS signals 

Table E.l: The  nominal MLS measurement  set. 
Radiometer  Band  Switch  Spectrometer  Channels 

. so . F B 2 5 - 1  . C l * * . C 2 5  R l A : 1 1 8  . 
R 2 : 1 9 0  . 
R 2 : 1 9 0  . 
R 2 : 1 9 0  . 
R 2 : 1 9 0  . 
R 2 : 1 9 0  . 
R 3   : 2 4 0  . 
R 3   : 2 4 0  . 
R 3   : 2 4 0  . 
R 4 : 6 4 0  . 
R 4 : 6 4 0  . 
R 4 : 6 4 0  . 
R 4 : 6 4 0  . 
R 4 : 6 4 0  . 

R 5 H :   2 T 5  . 
R 5 H :   2 T 5  . 
R 5 H :   2 T 5  . 
R 5 V :   2 T 5  . 
R 5 V :   2 T 5  . 

B 1 F  : PT 
B 2 F  : H 2 0  
B 3 F  : N 2 0  

B 4 F  : HN03 
B 5 F  : CLO 
B 6 F  : 03 
B 7 F  : 03  
B 8 F  : PT 
B 9 F  : CO 

B l O F  : CLO 
B l l F  : BRO 
B 1 2 F  : N 2 0  
B 1 3 F  : HCL 
B 1 4 F  : 03 
B 1 5 F  : OH 
B 1 6 F  : OH 
B 1 7 F  : PT 
B 1 8 F  :OH 
B 1 9 F  : OH -~ C l * * . C 2 5  

R l A : 1 1 8  . B22D:PT . S1 . DACS-1 . CO. * * C 1 2  8 
R 2 : 1 9 0  . B 2 3 D : H 2 0  . S o  . DACS - 2 . C O - - - C 1 2 8  
R 3   : 2 4 0  . B 2 4 D : 0 3  . S o  . DACS - 3 . CO. * C 1 2  8 
R 3   : 2 4 0  . B 2 5 D : 0 3  . SO . DACS - 4 . C O - - . C 1 2 8  
R 2 : 1 9 0  . B27M:HCN . S o  . MB11-1  . C l * " C 1 1  
R 4 :   6 4 0  . B28M:H02 . S o  . M B l l - 2  . C l - . - C 1 1  
R 4 : 6 4 0  . B29M:HOCL . S o  . M B l l - 3  . C l . * . C 1 1  
R 4 :   6 4 0  . B30M:H02 . S o  . M B l l - 4  . C l . . * C 1 1  
R 4 :   6 4 0  . B31M:BRO . S o  . M B l l - 5  . C l - * . C 1 1  

R1A:  118 . B32W:PT . SO . WF4 - 1 . C l . . . C 4  
R 3   : 2 4 0  . B33W:03 . S o  . WF4-2 . C l . " C 4  

so 
s 2  
so 
so 
so 
so 
s3 
so 
so 
so 
s4 
so 
so 
s5 
so 
so 
so 
so 

F B 2 5 - 2  
F B 2 5 - 3  
F B 2 5 - 4  
F B 2 5 - 5  
F B 2 5 - 6  
F B 2 5 - 7  
F B 2 5 - 8  
F B 2 5 - 9  

F B 2 5 - 1 0  
F B 2 5 - 1 1  
F B 2 5 - 1 2  
F B 2 5 - 1 3  
F B 2 5 - 1 4  
F B 2 5 - 1 5  
F B 2 5 - 1 6  
F B 2 5 - 1 7  
F B 2 5 - 1 8  
F B 2 5 - 1 9  

~~ 
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Appendix E. EOS MLS signal  designation  nomenclature 

Table E.2: The  alternate MLS measurement  set. 
Radiometer  Band  Switch  Spectrometer  Channels 

F B 2 5 - 8  . C 1 .   * * C 2 5  R1A:  118 
R1B:  1 1 8  
R1B:  1 1 8  
R2 : 1 9 0  
R2 : 1 9 0  
R 2 :   1 9 0  
R 3   : 2 4 0  
R 3   : 2 4 0  
R3 : 2 4 0  
R4 : 6 4 0  
R4 : 6 4 0  

R 5 H :   2 T 5  
R5H : 2 T 5  
R 5 V :   2 T 5  
R 5 V :   2 T 5  
R 5 V :   2 T 5  
R 5 V :   2 T 5  

B 1 F  : PT 
B 2 1 F :   P T  
B 2 1 F  : PT 
B 2 F  : H 2 0  

B 4 F  : HN03 
B 5 F  : CLO 
B 7 F  : 03 
B 8 F  : PT 
B 9 F  : CO 

B13F:HCL 
B 1 4 F  : 03 
B16F:OH 
B 1 7 F  : PT 
B 1 8 F  :OH 
B 1 9 F  : OH 
B 2 0 F :   P T  
B 2 0 F :   P T  

. s3 . 

. s4 . 

. s3 . 

. s 2  . 

. s2 . 

. s2 . 

. s3 . 

. s 2  . 

. s3 . 

. s 4  . 

. s 4  . 

. s5 . 

. s5 . 

. s5 . 

. s5 . 

. s3 . 

. s5 . 

F B 2 5 - 1 2  . 
F B 2 5 - 8  
F B 2 5 - 3  
FB2 5 -3 
FB2 5 -3 
F B 2 5 - 8  
F B 2 5 - 8  
F B 2 5 - 8  

F B 2 5 - 1 2  . 
F B 2 5 - 1 2  . 
F B 2 5 - 1 5  . 
F B 2 5 - 1 5  . 
F B 2 5 - 1 5  . 
F B 2 5 - 1 5  . 
F B 2 5 - 8  

F B 2 5 - 1 5  . 

C 1 . .  . C 2 5  
C l - * . C 2 5  
C l * * - C 2 5  
C l . . . C 2 5  
C l * * . C 2 5  
C l * - . C 2 5  
C l * . - C 2 5  
C l . - - C 2 5  
C l . . - C 2 5  
C 1 -  * * C 2 5  
C l * - - C 2 5  
C l - - - C 2 5  
C l . . . C 2 5  
C 1 . .  * C 2 5  
C l - . . C 2 5  

~~ . C l . . - C 2 5  
R1B:  118 . B 2 6 D : P T  . S1 . DACS - 1 . CO. . . C 1 2  8 
R l B : 1 1 8  . B34W:PT . SO . WF4-3 . C l " . C 4  
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